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Abstract—Local projection is a particularly effective
method of reducing noise in a nonlinear signal while pre-
serving its structure. [1] Kantz and Schreiber [2] estab-
lished a second order, single scale refinement of the first
order, single scale local projective filter of [3, 4]. Their
method better accommodates the geometry of a strange at-
tractor underlying data and is implemented in the nonlin-
ear time series analysis package TISEAN. [2] This work
extends the refinement to higher order and multiple scales,
thereby providing an analytic motivation for the original
refinement. Additionally, statistical analysis explains the
original refinement’s high efficacy. The novel refinements
identified in this work can achieve more effective noise re-
duction than established local projective filters.

1. Introduction

Linear filters obscure the structure underlying nonlinear
signals. [5] The filtering of nonlinear signals requires tech-
niques specifically developed for that purpose: nonlinear
filters, reviewed by [6]. A useful class of these are local
projective filters, reviewed by [7]. Local projective filters
correct the location of points in phase space informed by
the locations of neighbouring points. Since their incep-
tion by Cawley and Hsu [3]; Sauer [4], local projective fil-
ters have found continuous employment in spheres ranging
from the supernally immediate one containing our neurons
[8] to the study of light curves from distant stars within the
discipline which encompasses our entire universe [9].

Kantz and Schreiber [2] achieved more precise results
by better accommodating attractor geometry. They chose
as the origin of the projective subspace a weighted sum of
the first and second order centres of mass of local phase
space neighbourhoods (see figure 2.1).

This paper describes an analytic motivation for the re-
finement of [2] from which further higher order and multi-
ple scale refinements naturally follow. In many cases, the
extensions can reduce noise more effectively than estab-
lished local projective filters.

Section 2 describes established forms of local projection,
including the second order refinement of [2]. Section 3 de-
rives the higher order and multiscale filters proposed in this

paper. It goes on to explore the way in which considera-
tions of independently distributed measurement errors may
be incorporated into previous multiscale and higher order
results. Section 4 introduces the classical nonlinear sys-
tems used to assess the filters. Section 5 summarises and
suggests ways in which results could be extended.

The paper omits some details of the local projective
noise reduction process. For a complete description see
[10], which also includes an application to experimental
data.

2. Background

2.1. Local projection

Consider a series of N scalar measurements
s(1), s(2), . . . , s(N) ∈ R from a chaotic system. The
N − (m − 1)T vectors
xi , (s(i), s(i + T ), . . . , s(i + (m − 1)T )T ∈ Rm are called
m-histories and can be used to reconstruct phase space
[11, 12, 13].

Local projection begins with the transformation of the
m-histories xi via an invertible matrix R according to

zi , Rxi. (1)

Local projection of an m-history xi involves replacing
zi with zo

i + P(q)
i

(
zi − zo

i

)
(or, equivalently, xi with xo

i +

R−1P(q)
i

(
R

(
xi − xo

i

))
), where P(q)

i is the matrix represent-
ing projection onto the subspace spanned by the eigen-
vectors corresponding to the m − q largest eigenvalues of
the covariance matrix Ci ,

∑νi
j=1

(
z( j)

i − zo
i

) (
z( j)

i − zo
i

)T
,

x(1)
i , x(2)

i , . . . , x( j)
i denote the j nearest neighbours of xi,

z( j)
i , R

(
x( j)

i

)
, νi is the number of nearest neighbours of

xi considered, xo
i is the origin of the coordinate sytem in

which the projection is performed, and zo
i , R

(
xo

i

)
.

Cawley and Hsu [3]; Sauer [4] chose as the origin of
the coordinate system xo

i = xi , 1
νi

∑νi
j=1 x( j)

i , the centre of
mass of the nearest neighbours of xi. Other choices of xo

i
can yield superior results in local projection; these lead to
the higher order and multiple scale filters discussed in this
paper.
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Figure 2.1: Following figure 10.3 of [2]. The centres of
mass of local neighbourhoods (◦) do not, in general, lie
exactly on the attractor. The second order centres of mass
(•) tend to aberrate roughly twice as much.

2.2. A second order refinement

Note that the second order centre of mass xi refers to
the mean over the νi nearest neighbours of xi among the
neighbourhood centres of mass x1, x2, . . . , xN−(m−1)T . Kantz
and Schreiber [2] observed that the difference between xi

and the mean over nearest neighbours, xi − xi, is roughly
half the difference between xi and the second order centre
of mass, xi − xi (see figure 2.1). They deduced that 2xi − xi

is an estimate of xi in the absence of noise, and hence can
be a better point from which to apply local projection than
is xi. Figure 2.1 illustrates this observation.

3. Analytic motivation

3.1. Higher order refinements

For real numbers δ > 0, define the continuous moving

average operator Iδ by (Iδ f ) (x) =
1
2δ

∫ x+δ

x−δ
f (t)dt. Kantz

and Schreiber [2] achieve a frequently more precise esti-
mate of the m-history corresponding to a clean signal by
considering a linear combination of centres of mass of first
and second order. In analogy, require

fn(0) = a1 (Iδ fn) (0) + a2

(
Iδ2 fn

)
(0) (2)

to hold for all monomials fn(x) ,
{

1, n = 0
xn, n , 0 with 0 ≤

n ≤ nmax, and with nmax as large as possible. For (positive)
odd n, both the left and right of (2) are zero. Setting n = 0
and n = 2 in (2) yields a system of two linear equations
with the unique solution a1 = 2 and a2 = −1. This leads to
the second order refinement of [2].

For k = 1, 2, . . . , 20, the unique solution to the system of
k linear equations

fn(0) =

k∑
i=1

ai

(
Iδi fn

)
(0) n = 0, 2, . . . , 2(k − 1) (3)

is ai = (−1)i−1
(

k
i

)
, for i = 1, 2, . . . , k.

3.2. Multiscale refinements

Requiring that

fn(0) = a2

(
Iδ2 fn

)
(0) + b1

(
Iβδ fn

)
(0) (4)

holds for integers n such that 0 ≤ n ≤ 5 (with β ≥ 0) gives
a solution a2 = 4, b1 = −3, β =

√
8/3.

As will be illustrated in subsection 4.2, the multiscale
filter corresponding to (4) for 0 ≤ n ≤ 5 often performs
worse than the second order, single scale refinement of [2],
and rarely performs considerably better. This is surprising,
since the multiscale filter should be better able to approx-
imate the geometry of the underlying attractor. The next
section explains the result by showing that the second or-
der, single scale filter of [2] attenuates errors particularly
effectively.

3.3. Attenuating error

The choice of coefficients (a2 = −1, b1 = 2) and scale
(β = 1) corresponding to the refined filter of [2] not only
preserves the component of the geometry of the underly-
ing attractor described by a multivariate Taylor polynomial
of degree up to three in each variable, but also attenuates
errors particularly effectively.

For non-negative integer d define the discrete moving

average operator Jd by (Jd f ) ( j) =
1

2d + 1

d∑
i=−d

f ( j + i). Let

e(i) ∈ R be independent random variables with mean zero
and unit variance. The e(i) can be thought of as errors; in
this section is sought a choice of a2, b1, β for which they
are attenuated by the operator a2Jd

2 + b1Jβd.
To preserve the geometry of the underlying attractor, re-

quire (4) to hold for 0 ≤ n ≤ 3, yielding a2 = A(β) ,
β2

−2+β2 and b1 = B(β) , 1 − β2

−2+β2 . Consider the ex-
pectation of the square of the filtered error at j = 0,

S a2,b1,β,d ,
〈(((

a2Jd
2 + b1Jβd

)
e
)

(0)
)2
〉
, with these geomet-

ric constraints on a2, b1, β.
The desirable case of a dense embedding corresponds

to a large window d. However, in the limit d → ∞,
S a2,b1,β,d → 0. Therefore, normalise the expectation
S a2,b1,β,d by that corresponding to prototypical local pro-

jection. This gives Ta2,b1,β , lim
d→∞

S a2,b1,β,d

S 1,0,β,d
, called the nor-

malised expected error.
As figure 3.3 shows, TA(β),B(β),β has a local minimum

at β = β∗ ≈ 0.96215, for which a2 = a∗2 , A(β∗) ≈
−0.86174, b1 = b∗1 , B(β∗) ≈ 1.86174. These values are
suggestively close to the coefficients of the refined local
projective filter of [2], namely a2 = −1, b1 = 2, β = 1. In-
deed, as figure 3.3 shows, the ratio of normalised expected
errors is close to unity, with T2,−1,1/Ta∗2,b

∗
1,β
∗ ≈ 1.004.

4. Results and Discussion

Following [14, 2], the matrix R of (1) is diagonal with
R11 = Rmm = 103 and other entries of the main diagonal set
to 1. Again following [14, 2], the highest magnitude cor-
rections are assumed deleterious and rescaled to the mean
magnitude. Specifically, the largest 5% are rescaled. Fuller
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Figure 3.1: Normalised expected error as a function of
scale factor β for local projective filters satisfying (4) for
0 ≤ n ≤ 3. (b) The local minimum at β ≈ 0.96215, marked
◦, is close to β = 1 (corresponding to [2]), marked �. The
normalised expected error corresponding to β =

√
8/3 is

marked �.

details of parameter choices and their motivations, and a
more complete description of some steps of the local pro-
jection process, may be found in [10].

4.1. Benchmarks

Following [7], the filters considered in this paper are
benchmarked using time series from x-coordinates of the

[15] system

 ẋ
ẏ
ż

 =

 σ(y − x)
−y + rx − xz
−bz + xy

 with σ = 10,

r = 28 and b = 8/3 and a time step of ∆t = 0.2
(the large value helps to avoid the advantages of tempo-
ral correlation and ensure that methods rely on attractor

geometry); the Henon map
(

xt+1
yt+1

)
=

(
1 − axt

2 + yt

bxt

)
with a = 1.4 and b = 0.3; and the Ikeda map(

xt+1
yt+1

)
=

(
1 + 0.9 (xt cos φt − yt sin φt)

0.9 (xt sin φt + yt cos φt)

)
, where φt =

0.4 − 6/
(
1 + xt

2 + yt
2
)
. Each time series is normalised

to unity standard deviation, whereafter Gaussian noise is
added.

4.2. Results of benchmarking

Table 4.2 presents the results of filtering noisy nonlinear
systems with local projective filters of a single scale and
orders 1 (corresponding to the prototypical local projection
of [3, 4]), 2 (corresponding to the refinement of [2]), up to
5, as well as dual scale local projective filters derived from
purely geometric and from simultaneous geometric and sta-
tistical considerations. The four most frequently optimal
filters are the single scale filters of orders 1, 2 and 3 and the
filter derived via considerations of the normalised expected
error.

As seen in table 4.2 the multiscale filter corresponding
to (4) for 0 ≤ n ≤ 5 often performed worse than the second

Order: 1 2 3 4 5 2 2
Scales: 1 1 1 1 1 2 2

System N nmax: 1 3 5 7 9 5 3
Henon 5000 100%a 1.72 1.53 1.35 1.22 1.30 1.53 1.59

30% 2.27 2.31 2.23 1.99 1.82 2.30 2.37
10%a 3.19 3.46 3.45 3.39 3.26 3.53 3.50

3% 3.23 3.73 3.70 3.69 3.68 3.53 3.74
1%a 2.92 3.43 3.42 3.39 3.27 2.97 3.43

20000 10% 3.28 3.74 3.56 3.37 3.20 3.69 3.74
1%a 3.46 4.10 4.07 4.01 3.88 3.84 4.04

Ikeda 5000 100% 1.95 1.89 1.63 1.38 1.43 1.94 1.91
30% 1.65 1.49 1.28 1.36 1.49 1.67 1.65
10% 1.84 2.03 2.10 2.03 1.98 1.87 2.05

3% 1.52 1.73 1.75 1.69 1.61 1.49 1.73
1% 1.22 1.31 1.28 1.22 1.22 1.14 1.31

20000 10%a 2.34 2.63 2.80 2.56 2.38 2.45 2.66
1%a 1.87 2.31 2.36 2.25 2.09 1.82 2.31

Lorenz 5000 100% 1.69 1.37 1.24 1.39 1.53 1.40 1.46
(1963) 30% 1.96 2.11 1.95 1.64 1.72 1.73 2.14

10%a 1.83 2.04 2.05 2.06 1.99 1.88 2.04
3% 1.64 1.80 1.85 1.82 1.75 1.66 1.81
1% 1.40 1.57 1.57 1.52 1.49 1.41 1.56

20000 10% 1.98 2.17 2.20 2.16 2.07 1.98 2.18
1% 1.70 1.94 1.97 1.89 1.81 1.74 1.95

aConsidered by [7] (see their table I).

Table 4.1: Proportional increase in signal to noise ratio over
eight iterations, ε0/ε8. Higher order filters have coefficients
satisfying (3), and multiple scale filters have coefficients
satisfying (4), for 0 ≤ n ≤ nmax. The final column corre-
sponds to the filter of subsection 3.3, with coefficients cho-
sen to the minimise normalised expected error. The results
corresponding to the most and second most effective filters
are, respectively, bold and italic.

order, single scale refinement of [2], and rarely performed
considerably better. However, table 4.2 also shows that
the multiscale filter identified through simultaneous geo-
metric and error attenuation considerations (with parame-
ters a2 = a∗2, b1 = b∗1, β = β∗) almost always performed
similarly to, but usually marginally better than, the sec-
ond order, single scale refinement of [2] (with parameters
a2 = −1, b1 = 2, β = 1). This is consistent with the filters’
equivalent geometric motivations and similar normalised
expected errors (see subsection 3.3).

Table 4.2 shows that as noise level increases from the
lowest level considered, 1%, higher order filters become
relatively more effective. This trend terminates at a higher
noise level, from which the filter of [2] and the filter derived
in subsection 3.3 via considerations of error tend to be op-
timal. The highest noise level considered, 100%, favours
prototypical local projective filters. The pattern can be
rationalised by considering the relative importance of ge-
ometry preservation and error reduction at different noise
levels. At low noise levels, geometry is critical and so
filters of order two or greater are more effective. Higher
order filters become relatively more effective as the rela-
tively low level of noise increases. This may be because,
for a given neighbourhood size, higher order centre of mass
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measurements incorporate more observations. At interme-
diate noise levels both error attenuation and geometry are
significant. Hence, the filters derived from geometric con-
siderations which also correspond to a point near the mini-
mum of the normalised expected error TA(β),B(β),β of subsec-
tion 3.3 are optimal. At high levels of noise when geom-
etry is less important, prototypical local projection, which
corresponds to the still lower value of normalised expected
error T0,1,β = 1 (compare with figure 3.1), is most effective.

5. Conclusion

This paper examined the refined local projective filter of
[2], leading to series of filters involving different numbers
of length scales and orders of centre of mass operators. The
new filters were compared to established ones. Higher or-
der filters were relatively more effective for data of greater
length or corresponding to a higher underlying attractor di-
mension.

When reformulated for multiple scales, the geometric
considerations which led to effective higher order filters
did not consistently improve upon existing filters. How-
ever, the same geometric criteria, augmented by statistical
analysis designed to minimise error, led to filters usually
superior to established filters. In addition, the multiscale
statistical and geometric considerations explicate the effi-
cacy of the refinement of [2].

As noise level increased from a low value (1%), higher
order filters initially became relatively more effective. At
intermediate noise levels (∼30%), geometrically motivated
filters corresponding to high error attenuation (including a
new, dual scale filter) began to dominate until, at the high-
est noise level (100%), prototypical local projective filters
prevailed.
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