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Abstract—In this article, a numerical method is pre-
sented for computer assisted proofs to the existence and
uniqueness of solutions to Dirichlet boundary value prob-
lems in a certain class of nonlinear elliptic equations. In
a weak formulation of the problem, a weak solution is de-
scribed as a zero point of a certain nonlinear map. Based on
Newton-Kantorovich theorem, a numerical existence and
local uniqueness of solutions are proved by our proposed
method. Some conditions need to be checked numerically.
It is shown that all errors of numerical computations such
as discretization errors and rounding errors are figured out
by numerical computations with result verification. Finally,
an illustrative numerical result is presented for showing the
usefulness of proposed method.

1. Introduction

LetΩ be a bounded convex polygonal domain in Rm with
m = 2, 3. This article is concerned with Dirichlet boundary
value problems of nonlinear elliptic equations:{

−∇ · (a∇u) = f (u), x ∈ Ω,
u = 0, x ∈ ∂Ω, (1)

where a(x) is a smooth function on Ω with a(x) = a0 > 0
for some a0 ∈ R. Here, f : H1

0(Ω) → L2(Ω) is assumed
to be Fréchet differentiable. For example, the following
function

f (u) = −b · ∇u − cu + c2u2 + c3u3 + g

with b(x) ∈ (L∞(Ω))m, c, c2, c3 ∈ L∞(Ω) and g ∈ L2(Ω) sat-
isfies this condition. We shall propose a numerical method
of computer assisted proofs for the existence and local
uniqueness of solutions to the problem (1).

In 1988, M. T. Nakao [1] has presented a method of
a computer assisted proof for elliptic problems. In 1991,
Plum [2] has also presented another method of proving the
existence and uniqueness of solutions for the problem (1).
Both methods have been demonstrated to be useful in this
two decades. On the other hand, this article presents an-
other method of computer assisted proofs for (1) based on

the finite element method. In the following section, we de-
scribe how to work the proposal method. Then a computer
assisted proof algorithm is presented in Section 3. Finally,
we can show the illustrative result of our method.

2. Outline of proposal computer assisted proofs

In this part, we shall briefly sketch our proposed numeri-
cal method to prove the existence of weak solutions for (1).
Proposed method also evaluates guaranteed error bounds in
which there is an unique solution of original equations.

Let H−1(Ω) be the topological dual space of H1
0(Ω) the

space of linear continuous functionals on H1
0(Ω). For u, v ∈

H1
0(Ω), let us define a continuous bilinear form A(u, v) as

A(u, v) = (a∇u,∇v).

If we fix u ∈ H1
0(Ω), then A(u, ·) ∈ H−1(Ω). Thus, we can

define an operatorA : H1
0(Ω)→ H−1(Ω) by

< Au, v >= A(u, v).

Let us define
∥u∥a =

√
A(u, u).

This norm is equivalent to H1
0-norm, i.e., there exist posi-

tive constants Ca and ca satisfying

ca∥u∥H1
0
5 ∥u∥a 5 Ca∥u∥H1

0
for u ∈ H1

0(Ω),

In fact, we can choose ca =
√

a0 and Ca =
√
∥a∥L∞ . Fur-

ther, we can define an operator N : H1
0(Ω)→ H−1(Ω) by

< Nu, v >= N(u, v) = ( f (u), v),

Then, a weak form of Eq. (1) can be written as

Au = Nu.

Now, let us define the operator F : H1
0(Ω)→ H−1(Ω) by

F u = (A−N)u.
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Then, Eq.(2) can be written as

F u = 0. (2)

In the following, we will discuss how to prove the existence
and uniqueness of the solution of Eq. (2), the weak solution
of the problem (1). Newton-Kantorovich theorem is appli-
cable to the nonlinear operator equation (2). This theorem
gives our desired computer assisted proof for the existence
and local uniqueness of solutions to Eq. (2).

In order to apply Newton-Kantorovich theorem, the
Fréchet derivative of F is needed. The Fréchet differentia-
bility of F is followed by that of f . Moreover, the Fréchet
derivative of N at û ∈ H1

0(Ω), N ′(û) : H1
0(Ω) → H−1(Ω),

is given by

< N ′(û)u, v >= N′(û)(u, v) = ( f ′(û)u, v).

Here, f ′(û) : H1
0(Ω) → L2(Ω) is the Fréchet derivative of

f : H1
0(Ω) → L2(Ω) at û. Thus, for a given u ∈ H1

0(Ω) the
Fréchet derivative F ′(u) : H1

0(Ω)→ H−1(Ω) is given as

F ′(u) = A−N ′(u).

Now, we assume that an approximate solution û ∈ H1
0(Ω)

is given. The existence and uniqueness of solution are
proved by computer assisted proof in the neighborhood of
û. The following Newton-Kantorovich theorem is applica-
ble. This form of Newton-Kantorovich theorem is called
an affine invariant form [3].

Theorem 1 (Newton-Kantorovich Theorem) Let û ∈
H1

0(Ω). Let F : H1
0(Ω) → H−1(Ω) be Fréchet differen-

tiable at û. Assume that the Fréchet derivative F ′(û) is
nonsingular and satisfies

∥F ′(û)−1F û∥H1
0
5 α,

for a certain positive α. Then, let F : H1
0(Ω) → H−1(Ω)

be Fréchet differentiable on B(û, 2α) = {v ∈ H1
0(Ω) : ∥v −

û∥H1
0
5 2α} ⊂ H1

0(Ω) and assume that for a certain positive
ω and for any v,w ∈ B(û, 2α), the following holds:

∥F ′(û)−1(F ′(v) − F ′(w))∥L(H1
0 ,H

1
0 ) 5 ω∥v − w∥H1

0
.

If

αω 5
1
2
,

then there is a solution u∗ ∈ H1
0(Ω) of F u = 0 satisfying

∥u∗ − û∥H1
0
5 ρ :=

1 −
√

1 − 2αω
ω

.

Furthermore, the solution u∗ is unique in B(û, ρ). �

Next let us define the finite element approximation and
discrete projection with respect to the mesh size h. Let
Xn denote a finite-dimensional space spanned by linearly
independent H1

0-conforming finite element base functions

S h = {φ1, φ2, · · · , φn} depending on the mesh size h, (0 <
h < 1):

Xn = span{φ1, φ2, ..., φn} ⊂ H1
0(Ω).

For example, the dimension of Xn is (k + 1)2 if we take an
uniform mesh on square domain with k-equidistant parti-
tion by piecewise linear base functions.

The Ritz-projection Pn : H1
0(Ω)→ Xn is defined by(

a(x)(∇u − ∇(Pnu)),∇φh

)
= 0, ∀ φh ∈ Xn. (3)

For u ∈ H1
0(Ω) ∩ H2(Ω) and its approximation Pnu ∈ Xn,

the error estimate is given as

∥u − Pnu∥H1
0
5 C0(h)∥ f (u)∥L2 .

In case of a(x) = 1, for the rectangular mesh, Nakao,
Yamamoto and Kimura [4] have shown that one can take
C0(h) = h

π
for bilinear element. Kikuchi and Liu [5] have

proved that for a(x) = 1 and for the linear and equilateral
triangle mesh of the convex polygonal domain, C0(h) can
be taken as 0.493h.

Now, we consider a finite dimensional approximation of
Eq. (2) of the following form:

PnA−1FPnu = PnA−1(A−N)Pnu = Pn(u−A−1NPnu) = 0.

Let uh ∈ Xn be a solution of

Pn(uh −A−1NPnuh) = 0. (4)

Eq. (4) becomes

(a(x)∇uh,∇φh) = ( f (uh), φh), (∀φh ∈ Xn),

which is nothing but the finite element approximation [6]
of the nonlinear equation (2).

We also discuss how to calculate constants α and ω in
Theorem 1. Three constants are needed to evaluate. One is
the inverse operator norm estimation.

∥F ′(û)−1∥L(H−1,H1
0 ) = ∥(A−N ′(û))−1∥L(H−1,H1

0 ) ≤ C1,

This is estimated by the following theorem given by S.
Oishi [7]. This theorem is based on perturbation lemma
of linear operators [8] and given as

Theorem 2 (Oishi 1995) Let û ∈ H1
0(Ω) and N ′(û) :

H1
0(Ω) → H−1(Ω) be a linear compact operator. Let

Xn be a finite dimensional subspace of H1
0(Ω) spanned

by the finite element bases S h = {φ1, φ2, . . . , φn}. Let
Pn : H1

0(Ω) → Xn be the Ritz-projection. Assuming that
PnA−1N ′(û) : H1

0(Ω)→ H1
0(Ω) is bounded and satisfies

∥PnA−1N ′(û)∥L(H1
0 ,H

1
0 ) 5 K,

the difference between A−1N ′(û) and PnA−1N ′(û) is
bounded and enjoys

∥(A−1 − PnA−1)N ′(û)∥L(H1
0 ,H

1
0 ) 5 L
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and the finite dimensional operator Pn(I −A−1N ′(û))|Xn :
Xn → Xn is invertible with

∥(Pn(I −A−1N ′(û))|Xn )−1∥L(H1
0 ,H

1
0 ) 5 M.

Here, Pn(I − A−1N ′(û))|Xn : Xn → Xn is the restriction of
the operator Pn(I − A−1N ′(û)) : H1

0(Ω) → Xn on Xn. If
(1 + MK)L < 1, then the operator A − N ′(û) : H1

0(Ω) →
H−1(Ω) is also invertible and

∥(A−N ′(û))−1∥L(H−1,H1
0 ) 5

1
c2

a

1 + MK
1 − (1 + MK)L

=: C1.

�

For computer assisted proofs, next constant is the resid-
ual estimation of the operator equation (2). It is bounded
by

∥F û∥H−1 = ∥Aû − N û∥H−1

5 ∥û − PnA−1N(û)∥H1
0
+C0(h)∥ f (û)∥L2 =: C2.

Further, the Lipschitz constant is the last constant to
evaluate. It is defined through

∥F ′(v) − F ′(w)∥L(H−1,H1
0 ) 5 C3∥v − w∥H1

0
.

Then it follows that α 5 C1C2 and ω 5 C1C3. If αω 5
C2

1C2C3 <
1
2 is obtained by verified computation, then the

existence and uniqueness of the solution are proved numer-
ically. So that Newton-Kantorovich theorem can be applied
to the nonlinear operator equation (2) if three constants are
estimated.

3. Computer assisted existence test

In this section, summing up the above discussions, an
algorithm of computer assisted proofs is described for veri-
fying the existence and local uniqueness of solutions to Eq.
(1) in the neighborhood of û.

Algorithm 1 (Nonlinear Elliptic Eq.)
1. Compute an approximate solution û ∈ H1

0(Ω) of the
problem (4)
2. Compute rigorous upper bound of
∥(A−N ′(û))−1∥L(H−1,H1

0 ) by the following steps:

2.1 Compute ∥û∥L∞ and calculate K, L by

K =
Ce,2

a0
∥ f ′(û)∥L(H1

0 ,L
2),

and
L = C0(h)∥ f ′(û)∥L(H1

0 ,L
2),

respectively 1.
1Ce,p denotes Poincaré constant H1

0 (Ω) ↪→ Lp(Ω) by Sobolev embed-
ding theorem, ex. ∥u∥L2 5 Ce,2∥u∥H1

0
for u ∈ H1

0 (Ω).

2.2 Let D and G be n × n matrices whose i- j elements are
given by

(a(x)∇φ j,∇φi),

and
(a(x)∇φ j,∇φi) − ( f ′(û)φ j, φi),

respectively. Let a lower triangular matrix L̂ be the
Cholesky decomposition of D, D = L̂L̂t. If G is invert-
ible, then set

M =
Ca

ca
∥L̂tG−1L̂∥2.

When G is not invertible, stop with failure.

2.3 Check whether (1 + MK)L < 1 holds or not. If this
holds, then by Theorem 2

∥(A−N ′(û))−1∥L(H−1,H1
0 ) 5

1 + MK
a0(1 − (1 + MK)L)

=: C1.

Otherwise, stop with failure.

3. Calculate the residual by the formula

C2 := C2
a

(
∥û − PnA−1N(û)∥H1

0
+C0(h)∥ f (û)∥L2

)
.

Set α = C1C2.
4. Calculate the Lipschitz constant C3 by

C3 :=
(
Ca

ca

)2

Ce,2CL

where CL is the Lipschitz constant of f ′.
Set ω = C1C3.
5. Check the condition αω 5 1

2 . If this condition is satisfied,
there is a solution u∗ ∈ H1

0(Ω) of F u = 0 satisfying

∥u∗ − û∥H1
0
5 ρ :=

1 −
√

1 − 2αω
ω

.

Further, the solution u∗ is unique in B(û, ρ).
Otherwise, stop with failure.

4. Computational result

Now, we shall present a numerical result to illustrate the
usefulness of our method. All computations are carried out
on Mac OS X, 2.26GHz Quad-Core Intel Xeon by using
MATLAB 2010a with a toolbox for verified computations,
INTLAB [9].

For an application of our computer assisted proof
method, we treat a nonlinear Dirichet boundary value prob-
lem on Ω = (0, 1) × (0, 1):{

−∆u = u3 + 5 x ∈ Ω,
u(x) = 0, x ∈ ∂Ω. (5)

Obviously, the Fréchet derivative of f (u) = u3 + 5 :
H1

0(Ω) → L2(Ω) is given by f ′(u) = 3u2. An approxi-
mate solution û is calculated by the finite element method
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(pde toolbox on MATLAB) with uniform piecewise linear
elements of the mesh size 1

32 . The approximate solution is
bounded on Ω then û is the element of L∞(Ω) in this solu-
tion. So that for û ∈ L∞(Ω) ∩ H1

0(Ω), we can use

∥ f ′(û)∥L(H1
0 ,L

2) 5 3 min
{
Ce,2∥û∥2L∞ ,C3

e,6∥û∥2H1
0

}
∥c3∥L∞ .

For the Lipschitz continuity of F ′(u), for u ∈ H1
0(Ω) and

v,w ∈ B(û, 2α) we have

∥( f ′(v) − f ′(w))u∥L2 5 ∥3c3(v + w)(v − w)u∥L2

5
(
3C3

e,6∥c3∥L∞∥v + w∥H1
0

)
∥v − w∥H1

0
∥u∥H1

0
.

Since v,w ∈ B(û, 2α), it follows that

∥v + w∥H1
0
5 2∥û∥H1

0
+ 4α.

Thus, we have

∥ f ′(v) − f ′(w)∥L(H1
0 ,L

2) 5 CL∥v − w∥H1
0 (Ω),

with
CL = 6C3

e,6∥c3∥L∞
(
∥û∥H1

0
+ 2α

)
.
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Fig.1: Apptroximate solution û (h = 1
32 )

The verification algorithm in the previous section is appli-
cable to Eq. (5) with mesh size 1

32 . Our computer assisted
proof yields

∥u − û∥H1
0
5 ρ = 8.85 × 10−2.

Consequently, it follows that there exists an unique solution
in the ball B(û, ρ)

By increasing grid points, guaranteed error bounds are
improved with the ratio almost O(h). The guaranteed error
is presented in Table1.

Table 1: Computational results to Problem (5)

Mesh size: 1
2x Error: Ex O(hγ)

4 2.07×10−1 -
5 8.85×10−2 1.17
6 4.22×10−2 1.05
7 2.07×10−2 1.02
8 1.03×10−2 1.01
9 5.11×10−3 1.00

Furthermore we focus on the computational cost of pro-
posal method. It is several (up to 10) times more than that
of the approximation. An illustrative result with respect to
the performance is presented in Table 2. Here, we assume
that t1 is a computing time to get approximate solution.

Table 2: Comparing the execution time

Mesh size: 1
2x Approximate (t1) Verification (/t1)

4 0.04 2.09
5 0.11 1.99
6 0.47 2.21
7 2.14 3.19
8 17.25 3.96
9 89.21 8.64

Table 2 states that only some additional costs (up to 10
times) cause the verified solution by our computer assisted
proof method.
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