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Abstract— Feature extraction is essential in various data
analyses applications. Therefore, the development of an
universal feature extractor is critical. A restricted Boltz-
mann machine (RBM) is a powerful candidate for such an
universal feature extractor. In this study, we focus on a
Gaussian–Bernoulli RBM (GBRBM) and canonicalize it
through re-parameterization. An effective learning algo-
rithm for the canonicalized GBRBM is proposed based on
spatial Monte Carlo integration. Using numerical experi-
ments, we demonstrate that the GBRBM outperforms the
standard denoising autoencoder as the feature extractor in
strong noisy environments.

1. Introduction

Feature extraction (or more limited, data-normalization)
is essential for data analyses. However, the best feature
extraction method differs for each dataset. Therefore, the
appropriate feature extraction method for each dataset is
determined by trial and error. Hence, the development of
an universal feature extractor is critical.

Restricted Boltzmann machines (RBMs) are potential
candidates for such universal feature extractor. RBMs can
be regarded as distribution-based autoencoders and have
been successful in, e.g., dimensional reduction [1] and pre-
training of deep learning [2, 3]. An RBM-based feature
extractor has employed in an stochastic classification sys-
tem [4], in which the feature extractor is used as the input
converter, for improving noise robustness of the classifica-
tion system.

In this study, we focus on a Gaussian–Bernoulli RBM
(GBRBM) to treat continuous data [1, 5]. In Sec. 2, we
modify the ordinary GBRBM for canonicalization; the re-
sultant GBRBM is a canonical exponential family with re-
spect to the learning parameters. Section 3 presents an ef-
fective learning algorithm based on spatial Monte Carlo
integration (SMCI) [6, 7] for the canonicalized GBRBM.
SMCI is an effective MCI-like method on Markov ran-
dom fields based on a Rao-Blackwellization. SMCI-
based learning has been successful in Bernoulli–Bernoulli
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RBMs [8]. In Sec. 4, we numerically demonstrate the val-
idation of feature extraction based on the GBRBM trained
by the proposed learning algorithm.

2. Canonicalized Gaussian–Bernoulli restricted Boltz-
mann machine

GBRBM, a bipartite-type of the MRF, is introduced to
treat continuous data [1]. Consider that a GBRBM con-
sists of the visible layer, having continuous visible vari-
ables v := {vi ∈ (−∞,+∞) | i ∈ V}, and hidden layer,
having binary hidden variables h := {h j ∈ {0, 1} | j ∈ H}.
Cho et. al. [5] modified the original energy function and
used the following energy function:

Echo
θ (v,h) :=

∑
i∈V

(vi − bi)2

2σ2
i

−
∑
j∈H

c jh j −
∑
i∈V

∑
j∈H

wi, j

σ2
i

vih j,

(1)

where all learning parameters, {bi, σ
2
i , c j,wi, j}, are collec-

tively denoted by θ. Learning parameters {σ2
i } frequently

become a cause of unstable learning; without a special
treatment (e.g., a tuning of the learning rate), they may turn
negative during usual gradient-based learning. To prevent
this, Cho et. al. reparameterized σ2

i as σ2
i → exp si [5].

However, this reparameterization can cause exponential di-
vergence.

In this study, the energy function in equation (1) is mod-
ified. Based on Eq. (1), the resultant GBRBM is not a
canonical exponential family with respect to the learning
parameters (or is not a log-linear model). Reparametrizing,
bi/σ

2
i → bi and wi, j/σ

2
i → wi, j, and ignoring the constant

term leads to a novel energy function:

Eθ(v,h) :=
∑
i∈V

v2
i

2σ2
i

−
∑
i∈V

bivi −
∑
j∈H

c jh j −
∑
i∈V

∑
j∈H

wi, jvih j,

(2)

This energy function let the resultant GBRBM,

Pθ(v,h) :=
1
Zθ

exp
( − Eθ(v,h)

)
(3)
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be a canonical exponential family, where Zθ is the parti-
tion function (or the normalization constant). This canon-
icalization does not change the representation power. Fur-
thermore, σ2

i is reparameterized as σ2
i → sfp si, where

sfp x := ln(1 + ex) is the softplus function. This reparame-
terization does not have the risk of exponential divergence.
Based on the canonicalized GBRBM in Eq. (3), the condi-
tional distributions of each visible and hidden layers given
the others are as follows:

Pθ(h | v) =
∏
j∈H

exp(τ j(v)h j)
1 + exp τ j(v)

, (4)

Pθ(v | h) =
∏
i∈V

1√
2π sfp si

exp
{
− (vi − λi(h))2

2 sfp si

}
, (5)

where τ j(v) := c j +
∑

i∈V wi, jvi and λi(h) := (sfp si)(bi +∑
j∈H wi, jh j). In the rest of this paper, the term “GBRBM”

denotes the canonicalized GBRBM.
The training of the GBRBM is achieved through the

maximum likelihood. Given the dataset composed of N
data points: D := {v(µ) ∈ (−∞,+∞)|V | | µ = 1, 2, . . . ,N},
the log likelihood is defined as

ℓθ(D) :=
1
N

N∑
µ=1

ln
∑
h

Pθ(v(µ),h). (6)

The gradients of this log likelihood are obtained as follows:

∂ℓθ(D)
∂bi

= ED[vi] − Eθ[vi], (7)

∂ℓθ(D)
∂si

=
sig si

2(sfp si)2

(
ED[v2

i ] − Eθ[v2
i ]
)
, (8)

∂ℓθ(D)
∂c j

= ED
[
sig τ j(v)

] − Eθ[h j], (9)

∂ℓθ(D)
∂wi, j

= ED
[
vi sig τ j(v)

] − Eθ[vih j], (10)

where sig x := 1/(1 + e−x) is the sigmoid function,
ED[· · · ] denotes the sample average over the dataset
D, i.e., ED[ f (v)] = N−1∑N

µ=1 f (v(µ)), and Eθ[· · · ] :=∫ +∞
−∞
∑

h(· · · )Pθ(v,h)dv denotes the expectation of the
GBRBM. The gradients in Eqs. (7)–(10) includes the in-
tractable expectations of the GBRBM.

3. Learning Algorithm based on Spatial Monte Carlo
Integration

To execute gradient-based learning, the intractable ex-
pectations, Eθ[vi], Eθ[v2

i ], Eθ[h j], and Eθ[vih j], have to be
evaluated using an approximate method. The contrastive
divergence (CD) method is the most popular method [9].
In the CD method, the intractable expectations are approx-
imated using Monte Carlo integration (MCI) (i.e., the sam-
ple average) over the sample set generated using the layer-
wise blocked Gibbs sampling based on the conditional

distributions in Eqs. (4) and (5), in which each Gibbs-
sampling run is started from data point v(µ).

SMCI is an effective MCI-like method on MRFs, and
it is more accurate than the standard MCI [6, 7]. In this
section, the approximations of the intractable expectations
based on the first-order SMCI method (i.e., SMCI in which
the target and sum regions are the same) are derived. Sup-
pose that we have the sample set composed of T sample
points, S := {(v(t),h(t)) | t = 1, 2, . . . , T }, drawn from
Pθ(v,h). Based on the first-order SMCI method, Eθ[vi] is
approximated as

Eθ[vi] ≈ ES

[ ∫ +∞
−∞

viPθ(vi | h)dvi

]
= ES

[
λi(h)

]
, (11)

where Eq. (5) is used. Here, expression ES [· · · ] denotes the
sample average over the sample set S , i.e., ES [ f (v,h)] =
T−1∑T

t=1 f (v(t),h(t)). Similarly, Eθ[v2
i ] is approximated as

Eθ[v2
i ] ≈ ES

[ ∫ +∞
−∞

v2
i Pθ(vi | h)dvi

]
= sfp si + ES

[
λi(h)2].

(12)

Using Eq. (4), Eθ[h j] is approximated as

Eθ[h j] ≈ ES

[ ∑
h j=0,1

h jPθ(h j | v)
]
= ES

[
sig τ j(v)

]
. (13)

Finally, the approximation of Eθ[vih j] is considered. Based
on the first-order SMCI method, it is approximated as

Eθ[vih j] ≈ ES

[ ∫ +∞
−∞

∑
h j=0,1

vih jPθ(vi, h j | v−i,h− j)dvi

]
,

(14)

where v−i := v \ {vi} and h− j := h \ {h j}. The conditional
distribution in this expression is obtained as

Pθ(vi, h j | v−i,h− j)

∝ exp
(
−

v2
i

2 sfp si
+ bi, j(h− j)vi + c j,i(v−i)h j + wi, jvih j

)
,

(15)

where bi, j(h− j) := λi(h)/(sfp si) − wi, jh j and c j,i(v−i) :=
τ j(v) − wi, jvi. Thus, from Eqs. (14) and (15), the approxi-
mation of Eθ[vih j] is obtained as

Eθ[vih j] ≈ (sfp si)ES

[(
wi, j + bi, j(h− j)

)
sig Ki, j(v−i,h− j)

]
,

(16)

where

Ki, j(v−i,h− j) :=
sfp si

2
(
w2

i, j + 2wi, jbi, j(h− j)
)
+ c j,i(v−i).

The effectiveness of the proposed SMCI method, i.e.,
Eqs. (11), (12), (13), and (16), over the standard MCI
method was confirmed via numerical experiments using
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small-sized GBRBMs. However, we did not display the
results due to space limitation.

The proposed learning is summarized as follows. The
sample set S is obtained by the same procedure as the k-
step CD (CDk) method, where k denotes the number of the
blocked Gibbs sampling run before obtaining each sample
point. and subsequently, using the obtained sample set the
intractable expectations in the gradients in Eqs. (7)–(10),
i.e., Eθ[vi], Eθ[v2

i ], Eθ[h j], and Eθ[vih j], are evaluated based
on Eqs. (11), (12), (13), and (16). The learning parameters
are updated using the approximate gradients obtained the
aforementioned procedure. The order of the computational
time of the proposed learning is O(N|V ||H|) which is the
same as that of the CD method.

4. Feature Extraction based on Gaussian–Bernoulli
Restricted Boltzmann Machine

An RBM has an aspect as a distribution-based autoen-
coder. In the GBRBM, the marginal distribution over the
visible layer, Pθ(v), is encoded as Pθ(h) =

∫ +∞
−∞ Pθ(h |

v)Pθ(v)dv in the hidden layer, where Pθ(h | v) is the con-
ditional distribution in Eq. (4). Therefore, the marginal dis-
tribution over the hidden layer, Pθ(h), can be considered
as an encoding distribution (i.e., a feature distribution) of
Pθ(v). Here, Pθ(v) is perfectly reconstructed by the decod-
ing process: Pθ(v) =

∑
h Pθ(v | h)Pθ(h), where Pθ(v | h)

is the conditional distribution in Eq. (5). Based on this en-
coding and decoding relation, we consider the feature ex-
traction based on the GBRBM for an input v as

f j(v) :=
∑
h

h jPθ(h | v) = sig τ j(v). (17)

The jth feature for the input is defined by the expectation
of jth hidden variable.

In the following, we demonstrate the proposed feature
extraction using MNIST database consisting of 60,000
training and 10,000 test data points. MNIST is a database
of ten handwritten digits from “0” to “9”; each digit in
the database is a 28 × 28 gray-scaled image (i.e., a 784-
dimensional vector). First, using training dataset Dtrain, the
GBRBM with 784 visible and 500 hidden variables was
trained in an unsupervised scenario based on the SMCI
training method proposed in Sec. 3. The data points,
v ∈ {0, 1, . . . , 255}|V |, in both training and test datasets were
normalized by vi ← 2(vi/255) − 1, i.e., all elements fall in
the interval [−1,+1]; after normalization, small noises (i.e.,
Gaussian noise with standard deviation σsmall = 0.01) were
added to the training dataset. In the training, we used the
stochastic gradient method with a batch size of 256 and the
fixed learning rate was 0.001; the blocked Gibbs sampling
same as CD10 was used in the sampling process.

Subsequently, we conducted feature extraction for test
dataset Dtest based on the trained GBRBM using Eq. (17):
f (v), v ∈ Dtest. The dimension of each feature is 500.
We visually verify the validation of the proposed feature

extraction based on feature maps obtained by dimension-
ality reduction methods; a better feature is expected to be
higher clustered in the feature maps. To obtain the feature
maps, we used t-SNE [10] and UMAP [11]. For compari-
son, feature extraction based on the standard denoising au-
toencoder, which is the three-layered fully-connected neu-
ral network with the ReLU activation, was conducted, in
which the sizes of the input and output layers were 784,
and the size of the hidden layer was 500. In the training of
the denoising autoencoder, Gaussian noise with standard
deviation σsmall were used as input noise, and adam opti-
mizer [12] with a batch size of 256 was used. In the de-
noising autoencoder, the feature is the output of the hidden
layer for the corresponding input.

Figure 1 depicts the feature maps for the “clean” test
dataset. Although all maps display well-clustered struc-
tures, the map obtained by the GBRBM appears to be the
best in terms of the degree of cohesiveness of the clusters;
the clusters of “5” and “8” are splitting in top panels of
Figs. 1(a) and (b). Figure 2 depicts the feature maps for
the “noisy” test dataset, in which the data points in the test
dataset were corrupted by adding strong noise (i.e., Gaus-
sian noise with standard deviation σ = 2). In the maps of
the corrupted test dataset and of features obtained from the
denoising autoencoder (i.e., Figs. 2(a) and (b)), the clus-
tered structures were largely broken due to strong additive
noise. In contrast, the clustered structure remains in the
map of the features obtained from the GBRBM.

5. Conclusion

In this study, we first modified the energy function of
the GBRBM to canonicalize the resultant model; the mod-
ified GBRBM belongs to the canonical exponential family
with respect to the learning parameters. Next, for the modi-
fied GBRBM, an effective learning algorithm was proposed
based on SMCI. Finally, the GBRBM was applied to the
feature extraction problem. We numerically confirmed that
the feature extractor based on the GBRBM is superior to
that based on the standard denoising autoencoder in strong
noisy environments.
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