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Abstract–Chaotic and random neural network (CRNN) 

generates a time series that consists of various subseries 

under well-designed conditions.  The knowledge of subse-

ries is informative to a fast and secure pseudo-random-

number (PRN) generator.  Experimental results suggest 

that the typical time series from CRNN cannot divide into 

subseries without information on the structure of CRNN.  

The results are valuable for security applications. 

 

1. Introduction 

For the information security of IoT devices and embed-

ded systems, we have studied the computer-generated 

PRN series in these years [1-3].  PRN series is extracted 

from the outputs of CRNN with fixed-point arithmetic 

(Q5.26) and the activation function APLF3 or the function 

for 1013-bps-order generation speed [4], which is called 

random identity function (RIF), hereinafter.  We have 

studied the time series generated from CRNN which is 

composed of 2 cyclic neural networks (NNs) [1-4], and 

the time series consists of 2 independent subseries.  The 

subseries plays important roles in security applications 

(vide infra).  In this paper, we have discussed more gen-

eral features of subseries from cyclic and multi-cyclic 

NNs and reported on representative empirical results of 

new time series composed of 3 subseries. 

 

2. Time Series and Subseries 

2.1. Time Series Generated from Linear NN 

Let us consider an artificial neural network arranged in 

a straight line (Figure 1) without a self-regressive output.  

Artificial neurons are numbered N0, N1, …, Nk, …, Nn-1, 

where n is the number of neurons.   The output of Nk+1 is 

defined as Equation 1, where f is an activation function, xk 

is an output from Nk, wk is a synaptic weight, Ik is an ex-

ternal input (k = 0, 1, 2, …, n-1).   The network generates 

a discrete time series.  If N0 outputs only at time t = 0 and 

then following Nk outputs at t = k, it results in a 1-

dimensional time series; x0, x1, x2, …, xk, …, xn-1.  A time 

series as a universal set is expressed by U, here.  A subse-

ries is defined as subsets of U generated from the same 

unit, and not to mix with each other.   

 

 

 

Figure 1: Linear NN Consists of n Neurons (Ln-NN). 

xk+1 = f (wkxk +Ik)                       (1) 

 

2.2. Subseries Generated from Linear NN 

Let us consider how to generate multiple time series 

from the Ln-NN besides the time series mentioned in the 

last section.  The time series is called subseries S0, here. 

 

(Method-1)  

N0 outputs at t = 1 also and then following Nk outputs at t 

= k+1 based on Equation 1, which gives another time 

series that does not mix with S0.  It is defined as subseries 

that originated from the time difference.   

 

(Method-2) 

All neurons output at t = 0 and following Nk outputs based 

on Equation 1 give independent time series, which are 

also defined as subseries that originated from the initial-

position difference.  In this case, a subseries that starts 

from Nk at t = 0 is called Subseries k (Sk).  The maximum 

number of subseries is n based on the definition. 

 

Both methods are important, but mainly Method-2 is 

used in this paper because Method-1 needs a time limit or 

appropriate time interval for the finite number of neurons.   

The subseries sometimes eventually join the same tra-

jectory.  To avoid the confluence some parameters (e.g., 

the external inputs) should be changed in a unit of time. 

 

2.3. Benefit of Subseries 

 We have reported valuable applications by using subse-

ries [1-4].  For example, if periods of subseries are de-

signed within a measurable range, the degree of safety can 

be quantitatively estimated. The higher dimension vector 

of multiple subseries has implemented the ultra-long peri-

od time series, e.g., 10100000000 with 33554432 subseries. 

  The activation function RIF (Equation 2) needs PRN (pr) 

[6].  A possible method is to use the output from NN as pr.  

Adopting the output from the same subseries as pr, the 

period of the time series keeps measurable.  While, adopt-

ing the output from the other subseries as pr, the period is 

often too long to measure.  The knowledge of subseries is 

informative to implement a faster and securer PRN gener-

ator.   

f (x) = x + pr         (2) 

 

2.4. Subseries Generated from Cyclic NN 

Next, let us consider Cyclic NN which has a closed cir-

culation pathway as shown in Figure 2, where Cn-NN 

Nn-1 N0 N1 N2 N3 
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generates one-way outputs without mixing among subse-

ries. The number of subseries (σ) is n with Method-2 

without a time limit. 

 

 
 

Figure 2: Cyclic NN Consists of n Neurons (Cn-NN).   

Cn is named after the largest circulation pathway in a NN. 

 

2.5. Subseries Generated from Multi-Cyclic NNs 

Examples of cyclic and multi-cyclic NNs are shown in 

Figure3.  Figure 3a shows a 6-membered cyclic NN, 

which generates 6 subseries (S0-S5) with Method-2 with-

out a time limit.  C6[i,j]-NN is defined as a 6-membered 

multi-cyclic NN that is composed of an i-membered cyclic 

NN and a j-membered cyclic NN.  The number of subse-

ries (σ) of C6[i,j]-NN is calculated by a greatest common 

divisor of i and j because all subseries must repeat period-

ically through all circulation pathways.  The complicated 

example in Figure 3f is calculated by almost the same way.  

Subseries generated from C6[3,6]-NN (Figure 3c) are 

shown in Table 1 as the typical example.  The initial value 

of Nk is defined as xk(0) and the subseries originating from 

xk(0) is expressed as Sk (k=0,1,…,5).  Some subseries mix 

each other as time advances so that the unified subseries 

which originated from xk(0) and xl(0) is expressed as Sk,l.  

According to Table 1 the subseries from C6[3,6]-NN con-

sists of three 2-dimensional subseries, S0,3, S1,4, and S2,5.  If 

t = 3k (k = 0,1,2,…), three subseries are expressed as 2-D 

vector, S0,3 = (x0, x3), S1,4 = (x1, x4), S2,5 = (x2, x5), similarly 

if t = 3k+1, as S0,3 = (x1, x4), S1,4 = (x2, x5), S2,5 = (x0, x3), 

and if t = 3k+2, as S0,3 = (x2, x5), S1,4 = (x0, x3), S2,5 = (x1, 

x4).  Examples of various multi-cyclic NNs are shown in 

Figure 3, which generate many types of subseries. 

 

Table 1: Subseries Generated from C6[3,6]-NN. 

neuron 
Time / t 

0 1 2 3 4 5 6 7 

N0 S0 S5 S4 S3 S2,5 S1,4 S0,3 S2,5 

N1 S1 S0 S5 S4 S3 S2,5 S1,4 S0,3 

N2 S2 S1 S0 S5 S4 S3 S2,5 S1,4 

N3 S3 S2,5 S1,4 S0,3 S2,5 S1,4 S0,3 S2,5 

N4 S4 S3 S2,5 S1,4 S0,3 S2,5 S1,4 S0,3 

N5 S5 S4 S3 S2,5 S1,4 S0,3 S2,5 S1,4 

 

If we monitor outputs from Nk without any information, 

can we find the structure of NN or divide the time series 

into subseries?  If it is possible, it may be a threat to secu-

rity applications.  The dimension of the time series is in-

formative because it becomes the hints of the subseries.   

      
  (a) C6-NN        (b) C6[2,6]-NN 

σ = 6          σ = gcd (2,6) = 2 

 

      
(c) C6[3,6]-NN      (d) C6[5,6]-NN 

σ = gcd (3,6) = 3      σ = gcd (5,6) = 1 

 

     
(e) C4[4,4]-NN      (f) C6[3,3,3,3,6]-NN 

σ = gcd (4,4) = 4     σ = gcd (3,3,3,3,6) = 3 

 

Figure 3: Examples of Cyclic and Multi-Cyclic NNs. 

 

2.6. Dimension of Subseries 

  The dimension of the subseries is not always constant, 

e.g., Figure 3e is a 4-membered cyclic NN which is com-

posed of two circulation pathways.  The subseries from 

the NN are shown in Table 2.  The dimension of the sub-

series is 2 on N1 and N5 (or N2 and N4), yet the dimension 

of the subseries is 1 on N0 (or N3).  In other words, the 

time series consists of 4 subseries, S0, S3, S1,5, and S2,4.   

 

Table 2: Subseries Generated from C4[4,4]-NN. 

neuron 
Time / t 

0 1 2 3 4 5 6 7 

N0 S0 S3 S2,4 S1,5 S0 S3 S2,4 S1,5 

N1 S1 S0 S3 S2,4 S1,5 S0 S3 S2,4 

N2 S2 S1 S0 S3 S2,4 S1,5 S0 S3 

N3 S3 S2,4 S1,5 S0 S3 S2,4 S1,5 S0 

N4 S4 S5 S0 S3 S2,4 S1,5 S0 S3 

N5 S5 S0 S3 S2,4 S1,5 S0 S3 S2,4 
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However, the dimensions of the subseries from C6[2,6]-

NN, C6[3,6]-NN, C6[5,6]-NN, C6[3,3,3,3,6]-NN are con-

stant every time.  The time series U from C6[2,6]-NN 

consists of two 3D subseries, and that from C6[3,6]-NN 

and C6[3,3,3,3,6]-NN consist of three 2D subseries.  The 

time series U from C6[5,6]-NN consists of only one 5D 

time series, i.e., which cannot divide into subseries. 

 

3. Time Series Analysis 

This section aims to confirm whether the chaos time se-

ries analysis can give any information on the subseries of 

CRNN.  The structure of CRNN is common to the NN, 

but the activation function and the calculation method are 

unique as follows: the output from CRNN is calculated 

with fix-point arithmetic Q5.16, which allows overflow 

and underflow, and the activation function is APLF or RIF. 

In this work, the time series from C6[3,6]-NN (Figure 

3c) is analyzed as a typical example.  The lower 30 b of 

the same subseries is utilized for the pseudo-random num-

ber pr of RIF.  External inputs (Ik) are constant values, but 

a small perturbation (ID) is added to Ik (k = 3, 4, 5) when t 

= 3q (q = 0, 1, 2, …) due to generating subseries that have 

different trajectories.  7-bit-rotate-left instruction is addi-

tionally executed before the iteration only for x1, x2, and x3.  

The following Figures show the results on the time series 

from N5 with an embedded dimension, m = 2, and with a 

lag time τ = 3 as theoretical values for S2,5. 

 

3.1. Attractor of the Time Series 

The attractor of the time series that is embedded in 

time-delay coordinates with m = 2 and τ = 3 is shown in 

Figure 4.  The number of points in the target time series is 

5000.  The outputs are randomly distributed in the whole 

domain of Q5.16.  The results of τ = 1 and τ = 2 give simi-

lar attractors, which are nearly indistinguishable. 

 

 
Figure 4: Attractor of Time series Generated from N5. 

 

3.2. Local vs. Global Plot of Time Series 

The basic approaches of chaos time series analysis are 

to estimate the fractal dimension or the Lyapunov expo-

nent of the target time series.  Owing to confirmation of 

the difficulty, the result of the Local vs. Global Plot [5] of 

the time series is shown in Figure 5, which shows no flat 

region.  The result suggests that high randomness of the 

time series interrupts to obtain the accurate Lyapunov 

exponent.  Results with different m and τ shows also simi-

lar tendencies. 

 

 
Figure 5: Local vs. Global Plot of the Time Series. 

 

3.3. Estimation of Embedding Dimension  

The result of the GP algorithm [6] with various embed-

ding dimensions (2 ≤ m ≤ 9) is shown in Figure 6.  The 

ordinate is the correlation dimension of the embedded 

attractor, r is a scale factor, and the lag time τ is 3.  The 

correlation dimension increases with embedded dimension 

(m = 2, 3, …, 9), which is the distinctive feature of ran-

dom time series.  It is also true to analyze by the box-

counting dimension or with other lag times; τ = 1, 2, 3, 4, 

5, 6, which is related to the interval time of the subseries.  

It suggests that the method is hard to determine the fractal 

dimension and the lag time for the attractor.  Therefore, it 

also suggests that to obtain the number of time series is 

difficult without additional information. 

 

 
Figure 6: Correlation Dimension by GP algorithm. 

 

3.4. Determinism Analysis of the Time Series 

  The above results suggest that the basic approach is 

hard to afford any information on subseries, but many 

efficient methods are known on deterministic nonlinear 

prediction.  Next, owing to the denial of predictability 

with the prediction method, the result of the determinism 

analysis of the time series is shown in Figure 7.  Figure 7a 

shows the recurrence plot (RP) of the time series and Fig-

ure 7b shows the iso-directional recurrence plots (IDRP), 

and Figure 7c shows the Iso-directional Neighbors Plots 
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(IDNP).  IDNP is the intersection of RP and IDRP, the 

cardinality of which is known as an index of determinism 

of the time series [7].  The low cardinality of the point set 

in Figure 7c suggests that the deterministic character of 

the time series is low and therefore it is not predictable. 

 

     
(a) RP          (b) IDRP 

 

 
(c) IDNP (RP∩IDRP) 

 

 Figure 7: (a) the Recurrence Plots (RP), (b) the Iso-

directional Recurrence Plots (IDRP) of the time series 

from N5, and the Iso-directional Neighbors Plots (IDNP). 

 

3.5. Results of NIST SP800-22 Tests 

  For a security application, the upper-2-bit has been re-

moved from the time series according to the previous 

study [1-4].  Owing to the evaluation of the randomness 

the results of the NIST SP800-22 tests are shown in Table 

3 and 4, which show only the representative result due to 

space constraints.  The fail rates (%) of repeating 100 tests 

are listed in the Tables [8].  The result is acceptable for 

PRN generators for cryptographic applications. 

4. Conclusion 

CRNN generates a time series that consists of various 

subseries under well-designed conditions.  The knowledge 

of subseries is informative to a fast and secure PRN gen-

erator.  Experimental results suggest that the typical time 

series from CRNN cannot divide into subseries without 

detailed information on the structure of CRNN.  The ex-

perimental results are valuable for security applications. 

 

5. Future Work 

The features of the subseries will be studied in detail due 

to the implementation of the far-longer period of the time 

series and to the further acceleration of PRN generation 

under various conditions on GPUs. 
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Table 3: Result of "Proportion of Sequences Passing a 

Test" on the NIST SP800-22 Test Suite. a) 

FR FB CS RU LR RK OT AE RE RV 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.17 

 

Table 4: Result of "Uniform Distribution of P-values 

Test" on NIST SP800-22 Test Suite. a) 

FR FB CS RU LR RK OT AE RE RV 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

a) Abbreviations of test names:  FR; Frequency Test, FB; Fre-
quency Test within a Block, CS; Cumulative Sums Test, RU; 
Runs Test, LR; Test for the Longest Run of Ones in a Block, 
RK; Binary Matrix Rank Test, OT; Overlapping Template 
Matching Test, AE; Approximate Entropy Test, RE; Random 
Excursions Test, RV; Random Excursions Variant Test. 
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