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Abstract— The estimation of location based on the time 

varying Electric Network Frequency (ENF) is a new emerging 
technology in Information Forensics. This requires the extraction 
of the ENF signal from multimedia recordings and a comparison 
with already known power grid signatures. In this paper, we 
focus on ENF signal extraction and statistical modelling of ENF 
signals. We introduce a novel technique based on instantaneous 
frequency estimation using the Hilbert transform, which shows 
promising results. 

I. INTRODUCTION 
The Electric Network Frequency (ENF) analysis is used as 

a forensic science technique in order to estimate the location 
of an audio or video recording. The nominal value of ENF is 
either 50Hz or 60Hz, depending on the country of interest, 
with 60Hz used mostly in North America and Japan and 50Hz 
in most other countries. However, the ENF is not steady but 
fluctuates over time due to variations in the demand and 
supply of electric power. These variations present a generally 
consistent trend within the same grid [1]. ENF signals consist 
of changes in electric network frequency over time and can be 
extracted from recordings either directly from a power socket 
or using a portable audio recorder. These recordings are 
segmented and processed in order to produce an estimation of 
the frequency at each segment. It has been shown that signals 
extracted from video or audio recordings are similar to 
concurrently recorded clean power signals [2]. 

In this paper, (a) we implement two of the most commonly 
used techniques for ENF extraction from noisy, audio 
recordings, namely a Short-Time Fourier Transform (STFT) 
and a Spectrum Combining method [3], [4], and (b) we 
introduce a novel approach, based on the signal’s Hilbert 
transform. Our Hilbert based approach differs from the other 
two methods in that it makes no implicit assumptions about 
underlying stationarity, whereas both of the other methods do 
process frames of the recorded signal under the assumption 
that the ENF signal is stationary within that frame. The 
Hilbert-based approach produces more accurate results even 
under lower signal-to-noise (SNR) conditions. 

Applications using ENF signals include detection of 
tampering or modifications in a multimedia signal, time- and 
location-of-recording validation and region-of-recording 
identification [5]. As already mentioned, multimedia signals 
show similarities with power references from the same grid. 
Working under the assumption that variations of the ENF are 

consistent within the same grid and differ amongst distinct 
countries, statistical features can be extracted from ENF 
signals and a classification system to accurately identify their 
region-of-recording can be developed. This latter application 
is the one we focus mostly on, and our signal extraction 
techniques are qualitatively evaluated based on their 
performance in such a classification system. 

Section II provides an overview of the approaches used to 
extract the ENF signals from our recordings and Section III 
details the classification method used and presents our results. 

II. EXTRACTION OF ENF SIGNALS 
We worked on two different sets of recordings, namely 

some acquired using a sensing hardware and connected 
directly to a power socket, thus effectively measuring the 
power grid, and some acquired using a battery powered digital 
recorder. In the latter case the recorder is influenced by 
surrounding power sources and such recordings tend to be 
noisier, requiring different signal extraction approaches.  

Fig. 1 shows two concurrent recordings, one from our own 
sensing hardware and one using a mobile phone as a recording 
device. Our initial observation is that audio recordings tend 
indeed to be noisier than the ones made with a power recorder, 
as is evident by both time and frequency domain plots. This 
justifies our choice of applying different ENF extraction 
methods for different noise conditions. 

An ENF signal captured using a digital recorder, either 
battery powered or plugged into a power socket, can be 
modelled as: 

  

€ 

x(n) = ak
k=0

N −1

∑ cos(ωn) + w(n)   (1) 

where ω=2πf/fs, f is a random variable, denoting the 
instantaneous frequency of the power grid, fs is the recorder’s 
sampling frequency, N is the number of harmonics that fall 
under fs /2 and can be captured by the recorder and αk are the 
coefficients of each harmonic. These coefficients must also be 
considered random variables, as, in the case of a battery-
powered recorder, they are directly linked to the 
electromagnetic interference created by the power grid, and, 
thus, dependent on the specific recorder’s components and the 
overall physical structure of the underlying environment. 
Finally, w(n) can be considered as Gaussian noise.  



The number N of harmonics, was chosen to be 9, because 
we considered the amount of power present in higher 
harmonics to be negligible. As a result, a sampling frequency 
of 1kHz was deemed sufficient. However, since most of the 
ENF signature’s power is principally contained in the lower 
harmonics, one could also choose a different, lower sampling 
frequency. 

In general, both f and αk are non-stationary, as f depends 
on the load changes in the power grid as well as the available 
power supply mechanisms, and αk can change over time, 
especially if the recorder is being moved around or there are 
moving objects in the surrounding environment. It is therefore 
desirable, to develop an ENF estimation method that can deal 
with the inherent non-stationarity of the data. 

We proceed to describe four different methods for 
extracting ENF signals, a simple zero crossings algorithm that 
has been proven adequate for direct-from-power-socket 
recordings [5], an STFT approach used extensively in ENF 
related bibliography, a variation of the spectrum combining 
technique described in [4], and our own Hilbert based 
analysis. 

A. Zero Crossings 
Zero crossings is a method used in [5] that can produce a 

fast estimation of the frequency of a sinusoidal signal. The 
data are processed in frames of approximately 4s (4096 
samples), where we consider the ENF to be stable. This 
approach was also used in [6], and could adequately capture 
the power grid signature. An estimation is produced for each 
frame, counting the number of zero crossings in that particular 
segment.  

In our implementation we first estimate the central 
frequency of the signal and use passband filtering centered on 
this estimated frequency with a 10Hz margin. After that, the 
signal is divided into frames. For each frame, we find all 
subsequent samples that differ in sign, and calculate the time 
of crossing using linear interpolation. For two consecutive 
crossings, we compute the time difference between them and 
use it as an estimation of the signal’s period. The ENF sample 
of that frame is the average of the computed frequencies 
across all crossings.  

B. Short-Time Fourier Transform 
We have seen from Fig. 1 that multimedia recordings are 

noisier than the respective recordings acquired directly from a 
power socket. As a result, the Zero Crossings method fails to 
extract the desired ENF signal. So, it is evident, that a 

different method of extraction needs to be applied in the case 
of audio recordings.  

The most commonly used method to identify the 
fluctuations of a frequency varying signal is the Short-Time 
Fourier Transform (STFT). The signal is split into frames, and 
the Fourier Transform is computed for each one. Thus an ENF 
estimate can be produced for each frame. It is evident that, by 
computing the Fourier transform for each frame, we are 
making an implicit assumption that the ENF signal is 
stationary within its boundaries. 

It is shown in [7], that in multimedia recordings, the ENF 
is also present in higher harmonics. In many recordings, it was 
observed that we could achieve a higher SNR in frequencies 
that differ from the nominal frequency. Therefore, we decided 
to focus our analysis on the frequency which presents the 
highest SNR, as we could obtain a better estimation of the 
ENF. To get an approximation of the SNR, we first compute 
the frequency with the highest power amplitude near the 
nominal harmonic frequencies (i.e. 50, 100, 150 Hz etc.) and 
consider this to be the actual harmonic of the power grid. We 
attribute the power of a 1Hz band around the computed 
harmonic to the ENF signal, and consider the rest of the 2Hz 
band around this harmonic to be noise.  

Each frame is filtered using a passband filter centered 
around the estimated ENF of the previous frame, with a pass-
band of 0.4Hz. The algorithm is initialized with the harmonic 
which presents the highest SNR. The STFT is applied to the 
filtered samples of the frame, and results in an estimated ENF 
value, which is the frequency with the highest power 
amplitude. Lastly, in order to increase the accuracy of the 
estimation, zero padding is applied in each frame, and the 
resulting frequency is computed through quadratic 
interpolation. 

C. Spectrum Combining 
In this section, we discuss a variation of the method used 

in [4] and produce an ENF estimation by combining base and 
harmonic spectral bands each with a corresponding weight. 
Our implementation differs from [4] in that we choose to use 
the chirp z-transform to approximate the maximum coefficient 
and the corresponding frequency.  

The chirp z-transform is the z-transform of a signal along 
an arbitrary spinal contour. The contour used in each step of 
our algorithm is a segment of the unit circle, whose limits are 
specified by a range of 0.4 Hz around the frequency estimation 
computed in the previous step. This allows us to calculate the 
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Fig. 1.  Concurrent (a) clean and (c) audio recordings and their respective spectra (b), (d). 

Fig. 1.  
 
 



coefficients inside the area of interest with increased accuracy. 
Our implementation consists of the following steps: 

• Calculate the basic frequency of the recording. 
• Calculate the SNR of each harmonic in the same 

manner as described in Section II.B., and use it as the 
combining weight. Only the two harmonics with the 
largest weights are taken into account for the next steps 
to decrease computation time.  

• Segment the signal into frames of 4096 samples. 
• Compute the chirp z-transform for each segment 

around the two harmonics with the largest weights, 
combine the resulting spectra, and use the frequency 
corresponding to the maximum value as the ENF 
estimation for that segment. 

D. Hilbert Analysis 
In this section, we describe an ENF estimation method 

based on the Hilbert transform or Hilbert transformer. For an 
arbitrary time-series x(t), its Hilbert transform, 

€ 

ˆ x ( t )  is defined 
as 

 

€ 

ˆ x ( t ) = x(t)* 1
πt

=
1
π

PV x(τ )
t −τ

dτ
−∞

∞

∫   (2) 

where * denotes the convolution and PV the Cauchy principal 
value. Using this notation we acquire the analytic signal 

 

€ 

g(t) = x(t) + jˆ x ( t ) = r(t ) e jθ ( t )   (3) 

where  

€ 

j = −1  and 

 

€ 

r(t) = x 2( t ) + ˆ x 2( t )    (4) 

 

€ 

θ ( t ) = arctan(
ˆ x ( t )
x( t)

)    (5)  

This helps us define the instantaneous frequency of the 
signal as: 

 

€ 

ω( t ) =
dθ ( t )
dt

    (6) 

The Hilbert transform is essentially defined as the 
convolution of x(t) with 1/πt; therefore, the local properties of 
x(t) are emphasized. This quality makes the Hilbert transform 
ideal for dealing with non-stationary signals. We can thus 
proceed with our analysis without making any initial 
assumptions of either local or global stationarity. 

The notion of instantaneous frequency is ambiguous, as we 
have mostly associated frequency with the Fourier transform, 
and specifically the ubiquitous presence of sinusoidal 
oscillations in our data. The instantaneous frequency defined 
in (6) is associated with each sample of the processed signal. 
From that end, the definition of instantaneous frequency seems 

to lack physical meaning, as we cannot define a period of 
oscillation using only a single sample. For it to make sense, it 
would have to be associated with a “monocomponent 
function”, i.e. a function that at any given time has only a 
single component, and hence we could obtain a unique, well-
defined frequency. This assumption places severe limitations 
in the form of the data we can manipulate. We can circumvent 
those by limiting our data to narrow band signals only. Even 
operating under this assumption though, we still obtain errors, 
for example negative frequencies, a problem also observed in 
[8].  

However, we need not obtain an instantaneous frequency 
estimation for every sample of our recording. We can compute 
a single value for every frame of 4096 samples, where we 
consider the ENF to be stable, using the mean value of all 
calculated instantaneous frequencies which fall within the 
specified filter’s range. In our application, we decided that 
using a band-pass filter with a 0.4Hz pass-band, would 
adequately filter out all unwanted frequency components. This 
is in accordance with the other methods previously discussed, 
but does not impose any stationarity restrictions on our data, 
as we combine the instantaneous frequency samples produced 
and, considering these results to be noisy estimations of the 
signal’s true frequency, we adopt their mean value as an 
estimator of the ENF. 

This approximation is expected to provide a good, albeit 
noisy, estimation of a signal’s frequency. Since the global 
variance of ENF signal may exceed our specified band of 
0.4Hz, it is impossible to filter the signal around the calculated 
central frequency, as this could perhaps filter out crucial 
spectral information. Instead, we choose to use an adaptive 
filtering scheme, processing each frame separately, and 
centering our filter on the frequency estimated for the previous 
frame. Again, as in the STFT method described in II.B, we 
initialize our algorithm using the harmonic which presents the 
highest SNR.  

III. EXPERIMENTAL DATA ANALYSIS 

A. Similarity between simultaneous recordings 
The data used were collected with the sensing circuit 

developed for the purposes of the 2016 IEEE Signal 
Processing Competition1. The first measure used to evaluate 
our methods’ performance was the degree of similarity 
between ENF signals extracted from concurrent recordings. 
One such metric is the correlation coefficient which quantifies 
the correlation and dependence between ENF signals. Using 
our recording device to establish the ground truth and an 
iPhone 4 as a battery-powered audio recorder to produce 
simultaneous recordings, we developed a database of clean 
and noisy ENF signals. Since the ENF signature is ubiquitous, 
we should be able to detect the same signal present in both 
recordings. We positioned the audio recorder in different 
environments, and different settings, to measure our methods’ 
performance under various noise conditions. 

We were able to produce better results using our Hilbert 
based method. Specifically, we obtained a mean value of 

                                                           
1 http://www.icassp2016.org/SPCup.asp 
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 Fig. 2. (a) Recording under high SNR conditions. The corresponding correlation coefficients are 0.919 for STFT (b), 0.804 for Spectrum Combining (c) 

and 0.935 for Hilbert analysis (d). 

correlation coefficient of 0.4975 compared to 0.3975 produced 
by the Spectrum Combining method and 0.2959 by STFT, 
with variances of 0.2359, 0.2210 and 0.2407, respectively. A 
number of 31 recordings were used, with total duration of 
approximately 20 hours. Excluding some recordings that 
showed a very low SNR, we obtained better results. 
Specifically, a mean score of 0.7627 for the Hilbert method, 
0.5365 for Spectrum Combining and 0.4567 for STFT, with 
variances of 0.088, 0.1975 and 0.2179, respectively. This 
shows that, on average, our method can produce estimates of 
the ENF that are closer to the ground truth and is more 
resistant to noise. 

Fig. 2 shows the results obtained by applying all methods 
to two simultaneous recordings made using our sensing 
hardware and an audio recorder. Our Hilbert-based method 
achieves a significantly higher correlation coefficient, contains 
fewer outliers and also presents a better visual correspondence 
with the ground truth. From the other two methods, STFT 
provides a better visual result, with fewer fluctuations and 
outliers, but the correlation coefficient does not differ 
significantly from Spectrum Combining. In general though, 
the latter method produced better results overall.  

B.  One Class Support Vector Machine (OC-SVM) 
Classification 
Much of the recent work using the ENF criterion is 

focused on establishing region-of-recording using a supervised 
learning approach, without the need to compare the ENF 
signal from an audio recording to a simultaneously recorded 
clean ENF signal [9]. In simple words, the extracted ENF 
signal must be qualitatively similar to ENF signatures 
representative of that particular power grid. Following this line 
of reason, we developed another measure of performance for 
extraction techniques, which is the classification results 
produced by an OC-SVM classification system. We use 

recordings made directly from a power socket, using our 
hardware, to train an OC-SVM, and then the ENF signals 
extracted from audio recordings from the same grid for 
testing. Apart from the classification percentage, we also 
present the mean score for each configuration. This score 
results from our OC-SVM classifier and serves as a 
confidence measure for the classification result. Intuitively, 
the higher the resulting score for a particular example the 
more confident we are that it is classified correctly.    

The classification system used to measure the performance 
of our ENF extraction methods is based on the multiclass 
classification scheme developed in [9]. Our focus has been on 
developing an extraction method that would be able to 
distinguish between recordings made in different grids and 
that is why we evaluated these methods based on how well the 
produced estimates fit into a class, defined by ground truth 
ENF signatures. 

TABLE I. FEATURES USED IN OUR CLASSIFICATION MODEL 

Index Features 
1 mean of ENF segment 
2 log (variance) of ENF segment 
3 log(range) of ENF segment 
4 log (variance) of approximation after 9-

level wavelet analysis 
5-13 log(variance) of nine levels of detail 

signal computed through 9-level wavelet 
analysis 

14-15 AR(2) model parameters α1 and α2 
16 log(variance) of the innovation signal 

after AR(2) modeling. 
 



 As a first step, we choose features that can quantitatively 
describe our grids. We use sets of 8-minute-long segments of 
ENF signals and the same features which have been used in 
[9], shown in Table 1. These features have proven to be good 
predictors of a segment’s region-of-recording and accurately 
differentiate between recordings from different grids. We 
assume that they will also prove good predictors for our OC-
SVM classification problem. To test this hypothesis, we first 
train our classifier using a subset of the power recordings, 
which we consider as ground-truth and certainly contain the 
ENF signature, and test the classifier using the rest of the 
power recordings. Using a 62% percentage of our clean 
signals for training and the rest 38% for testing, we obtained a 
98% correct classification percentage with a mean score of 
99.10, and therefore concluded that our assumption was valid.  

In order to make our classifier independent of the 
segmentation method used, as it was possible to get segments 
that did not contain an ENF signature representative of the 
power grid, we chose to use overlapping segments both for 
training and testing. This approach has the added benefit of 
producing more training examples and creating a better 
defined class in the feature space.  

We distinguished between two different arrangements for 
our classification system. In the first one, all of the available 
signals were used, both for the training and the testing set. In 
the second one, simultaneous recordings were isolated, a 
portion of them was reserved for the testing set and their 
counterparts were excluded from the training set. In general, 
we reserved the audio recordings which presented the highest 
SNR for the noisy dataset, and excluded their concurrent 
counterparts from the clean dataset. This arrangement is 
considered to be less-biased than the first one, as it makes 
certain that our system trains on and accurately identifies the 
power grid signature present in the ENF signals.  

Additionally, two configurations were used for dealing 
with the recordings made by our sensing hardware. In the first 
one, we used the clean ENF signals extracted by applying the 
zero crossings method on the recordings. In the second 
configuration, the clean ENF signals were corrupted with 
Gaussian noise, a technique used in [9], where a noise-
adaptation multi-class classification system was developed, 
and showed an increased performance on classification results. 
Again, this configuration was first tested by using only these 
corrupted signals both for training and testing an OC-SVM. 
The performance of our classifier did not change substantially, 
and yielded a 97.36% correct classification rate, with a mean 
score of 97.61. 

Finally, all resulting scenarios were implemented in two 
versions, each time interchanging between audio and clean 
recordings for the training and testing set. This serves to test 
our extracted signals’ ability to both fit in a created SVM class 
and form a well-defined class on their own. 

Our results are presented in Tables II and III. The Hilbert-
based technique performs consistently better in all possible 
testing scenarios, yielding both better classification results and 
confidence values. The Spectrum Combining (SC) and STFT 
methods show similar performance, with SC producing a 
higher confidence level in all its classification results.  

Spectrum Combining shows an improved performance 
when evaluated on non-concurrent recordings. This 
improvement can be attributed to the fact that only the audio 
recordings with the highest SNR were used for the noisy 
database, thus acquiring ENF signals much closer to the 
ground truth, which are more likely to contain the power 
grid’s signature. STFT is also severely limited when applied to 
classifying clean recordings with an OC-SVM trained on 
audio recordings, especially in the case of using only non-
concurrent recordings. On the other hand, the Hilbert method 

TABLE II. RESULTS USING ALL RECORDINGS FOR TRAINING 

Training Testing Quality metrics Hilbert Spectrum 
Combining 

STFT Noise 

71.41% 
(35.40) 

42.86% 
(14.00) 

44.19% 
(5.50) No 

Power Audio 
73.22% 
(52.40) 

42.46% 
(28.88) 

43.25% 
(4.56) Yes 

99.90% 
(36.18) 

84.70% 
(13.33) 

61.79% 
(3.85) No 

Audio Power 

Classification 
percentage 

 
(Mean Score) 

99.90% 
(52.37) 

98.85% 
(16.34) 

99.34% 
(21.37) Yes 

TABLE III. RESULTS USING ONLY NON-CONCURRENT RECORDINGS FOR TRAINING 

Training Testing Quality metrics Hilbert Spectrum 
Combining 

STFT Noise 

71.41% 
(29.87) 

51.12% 
(13.56) 

46.80% 
(3.51) No 

Power Audio 
73.12% 
(37.98) 

53.99% 
(27.43) 

42.62% 
(10.44) Yes 

99.67% 
(19.65) 

72.34% 
(6.11) 

8.56% 
(0.94) No 

Audio Power 

Classification 
percentage 

 
(Mean Score) 

99.84% 
(26.44) 

99.51% 
(16.89) 

89.20% 
(7.53) Yes 

 



is more consistent in its results, which leads to the conclusion 
that it is, in general, more resilient to noise.  

In all cases, the classifiers trained on audio recordings and 
tested with clean signals produced far better results. This is 
consistent with our interpretation of them as noisy versions of 
the correct signals, thus producing features with a higher 
variance that form a hyper-surface of larger volume in the 
feature space, which makes it easier to classify the clean ENF 
signals. Finally, corrupting the signals from clean recordings 
with Gaussian noise, has little impact on the classification 
percentages, when these recordings are used for training, but 
greatly improves the confidence values. Again, this can be 
attributed to the larger volume of the resulting hyper-surface 
in the feature space. 

IV. CONCLUSIONS 
The obtained results indicate that the Hilbert based 

approach is more suitable for ENF extraction, especially in 
applications which require identification of region-of-
recording. Its main advantage is that it accounts for the non-
stationarity of the acquired data, while both of the other 
methods used, assume a local stationarity within each 
particular frame. Moreover, our method performs better on 
average, even under relatively low SNRs, when the other 
methods fail to extract the ENF signal. 

An interesting phenomenon, which was observed during 
the acquisition and analysis of the Greek power grid database, 
is that the ENF signature appears to slightly change over 
different months. Specifically, a portion of the recordings 
were made during early-to-mid winter and the rest during 
early spring. Presumably, this can be attributed to different 
load demands but may also be dependent on weather 
conditions and the way they impact performance of power 
generators and the power grid. This property can be further 
investigated by acquiring and comparing recordings made in 
different times of the year. 

Future work in the ENF extraction problem should be 
directed towards identifying the ENF signature under any 
noise conditions. Of particular interest is performing a similar 

analysis to recorded calls made from mobile phones, an 
application of significant interest to Information Forensics.  
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