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Abstract— An extremely low cost and complexity hardware 

linear interpolator is presented in this paper used for the 

improved reconstruction of audio or image signals like the ones 

produced by surveillance optic or infrared cameras, X-ray 

images, sound detectors, microphones etc. Real time compression 

can also be performed if the audio or image signal has long 

sequences of identical values. A set of appropriate correction 

rules for exponential or logarithmic curves that are based on 

simple operations like shifts and comparisons can be employed 

since several parts of a signal can be approximated by such 

exponential or logarithmic curves. Applications in the Internet of 

Things (IoT) area can benefit from such an interpolator-

compressor since lower resolution/power Analog Digital 

Converters (ADCs) can be used in lighter transceivers that 

exchange information with lower data rate. An improvement of 

about 15% in the Mean Square Error (MSE) has been measured 

using real signals. An interpolator with 9-bit input resolution can 

be implemented with only 583 Logic Elements (LE) i.e., less than 

3% of an Altera Cyclone III EP3C25N Field Programmable Gate 

Array (FPGA) resources. 

Index Terms— linear interpolation, image enhancement, audio 

enhancement, compression 

I. INTRODUCTION 

The interpolation methods have been used for accurate 

continuous signal reconstruction by a number of discrete 

samples. The fundamental and easier to implement 

interpolation methods are the zero-order hold (which is actually 

the output of a Digital to Analog Converter-DAC) and the 

linear (or first-order hold) interpolation in the time domain. 

More sophisticated methods are the higher order interpolation 

methods in time domain like the cubic spline interpolation [1] 

or in the frequency domain: Lagrange, min-max interpolation, 

etc. The time domain linear interpolation is the most 

appropriate for low complexity hardware implementation since 

most of the other methods require more complicated operations 

(multiplications, divisions, matrix inversion, etc).  

Interpolated values can be used for the approximation of 

missing data samples retrieved by ADCs that operate with low 

sampling rate. Although advanced signal approximation 

techniques can be implemented in software for off-line signal 

processing, these approaches are not appropriate for real-time 

operation that is necessary in IoT applications where there is an 

abundance of signal sources. Low order time-domain 

interpolators have been studied for decades but their low 

complexity/cost architecture remains the most appropriate for 

real time hardware implementations. In any case, the cost of the 

interpolator should not exceed the benefit from the use of a 

lower resolution ADC. 

A linear interpolator is described in [2] where several 

interpolated values are inserted between successive known 

samples with the typical resolution increasing from 8 to 12 bits. 

The interpolator described in [2] has been fabricated in a 1×1 

mm
2
 CMOS integrated circuit. Several ADC output post-

processing modules have been proposed for the correction of 

Differential or Integral Non-Linearity (DNL/INL) static errors. 

A histogram approach corrects the INL error of an ADC in [3] 

increasing its resolution by 4-bits. 

Min-max and Lagrange interpolators are used in [4]. 

Several interpolating schemes are examined in [5] and [6] by 

Y. Eldar and T. Michaeli. The MSE for various parameters 

including interpolation rate is examined in [5]. The MSE is 

30% higher than the optimal one for interpolation rate equal to 

1 while the gap closes soon when the interpolation rate 

increases to 4. The authors measure the Peak Signal to Noise 

Ratio (PSNR) in [6] in various image reconstruction cases. 

An adaptive example-based Super-Resolution (SR) method 

with a novel classification approach is presented in [7]. For the 

comparison against several other approaches, the Structured 

Similarity (SSIM) is used. Both SSIM and PSNR are used to 

compare the proposed interpolation method in [8] against 

Linear Filtering interpolation (LFI) (Cubic Spline-CS, 

Lanczos), Edge Directional Interpolation-EDI (NEDD, LSMD) 

methods. 

As can be seen from the previous approaches different 

measures are used to demonstrate the quality of a proposed 

signal reconstruction method. The expected errors from various 

types of interpolators (linear, RC, Butterworth n-pole low pass 

filter) used at the output of ADCs is formally described in [9]. 

The SSIM is defined in [10]. 

In the first-order interpolation, the connection between two 

successive ADC samples is assumed to be linear. The shorter 

the successive sample distance is, the smaller the error of the 

first-order hold is. The curvature between the two successive 

values cannot be modeled by the first-order hold. The linear 

interpolation scheme described here is based on a first-order 

interpolation in the time domain that can be implemented with 

low cost hardware that does not require more complicated 
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operations than additions, comparisons and counters. Error 

correction rules are defined for the case where the whole input 

signal or a part of it is logarithmic or exponential. Although 

there cannot be a common correction method for all types of 

curves, a strategy that reduces the error in the most common 

cases is adopted and tested. 

The proposed interpolation method can increase the Signal 

to Noise and Distortion Ratio (SNDR) as well as the Spurious 

Free Dynamic Range (SFDR) of sinusoidal signals by up to 

100% as was shown in [11]. In the present work we focus on 

real audio and image signals and see that a significant 

improvement of up to 15% can be achieved in their quality. 

The interpolator described in this paper can also perform real 

time compression in the case of sparse or signals with long 

sequences of identical samples. For example, the output of the 

pressure sensor was compressed to the 11% of its original size. 

This is due to the fact that the compressed output represents the 

signal in pairs of the form (V, C) where the V is a sample value 

that appears C times. However, if no identical values appear in 

successive samples in the original signal then no compression 

can be achieved. 

The proposed interpolator was evaluated using 

reconfigurable hardware. An interpolator with 9-bits output 

along with its decompression unit required 583 Logic Elements 

(LEs) or less than 3% of the LEs of a Cyclone III EP3C25N 

FPGA. 

The interpolation method and the corresponding 

architecture are described in Section 2. The error correction 

rules that can be employed when the input signal is exponential 

or logarithmic are presented in Section 3. Finally, experimental 

results are discussed in Section 4. 

 

Fig. 1.  The proposed interpolation method with no error correcting rules. 

II. INTERPOLATION METHOD 

The proposed interpolation method is a combination of zero 

and first order hold as can be seen from Fig. 1. The continuous 

line is the real signal while the dashed line corresponds to the 

output of a DAC that would accept the discrete values yn, yn+1, 

etc at its input. These values can have been retrieved by an 

ADC that samples a real signal y(t) at the intervals n∙Ta, 

n=1,2,.. where Ta is the ADC clock period. Each one of the 

yn=y(n∙Ta) values appears for N interpolator clock periods Ti. 

The interpolator clock frequency fi is equal or higher than the 

ADC sampling frequency thus, each yn value appears multiple 

times at the DAC input. The ratio of the interpolator clock 

frequency and the ADC sampling rate may be in the order of 

10 or higher but this can be achieved easily since it is 

performed by digital circuits while the sampling rate of the 

ADC is harder to be increased due to the conversion latency. 

Assuming yn appears for N samples it is obvious that all but the 

first of these samples have an error: 

 )()( aiai nTytnTy  with ai Tt   

For monotonically increasing or decreasing y(t) in the 

interval [n∙Ta,(n+1)Ta), the sum of the absolute error of all the 

N samples is decreased if half of them is replaced by the value 

(yn+yn+1)/2 as shown in Fig. 1. Consider for example a 

monotonically increasing y(t). By definition: 

 )()()(0 1 iaiaa tnTytnTynTy  

It is obvious from (1) and (2) that:  

 10     

where ε0 is 0 if the ADC and DAC are ideal or equal to ec 

(see Fig. 1) if the ADC and DAC are non-ideal. If the last N/2 

samples of the interval between yn and yn+1 are replaced by the 

value: (yn+yn+1)/2, the error εi΄ (N/2≤i<N) of these samples are 

lower than εi since: 



iaia

aa
ia

a
aa

aaa

aa

nTytnTy

TnynTy
tnTy

nTy
TnynTy

nTyTnynTy

nTyTny

 













')()(

2

))1(()(
)(

)(
2

))1(()(

)(2))1(()(

)())1((

 

 

The dotted line in Fig. 1 shows the resulting interpolated 

signal. The replacement process described above can be 

recursively applied in order to estimate additional intermediate 

points. The generated intermediate points belong to the piece of 

line of a first-order hold. If the input signal does not change 

monotonically between successive sample values, a lower 

approximation error is not guaranteed. This may occur when 

the successive ADC outputs are retrieved using excessively 

long sampling intervals, compared to the signal frequency. 

The error improvement that is achieved by recursive 

interpolations is gradually decreasing since they are applied on 

estimated intermediate values that are not identical to the real 

ones. For this reason, it is not worth using more than 3-4 

interpolation stages because the cost increases for a negligible 



gain in the linearity. In [11] a three-stage interpolator has been 

tested with sinusoidal signals improving their linearity 

(expressed as SNDR) by up to 100% if the initial resolution is 

too low. Multiple stage interpolation can also be beneficial in 

the case of sensor signals that change with a slow rate. 

However, in the case of signals representing acoustic sound and 

images multiple interpolation stages do not show a significant 

error improvement and are not studied in this work. 

The architecture of a circuit implementing the interpolator 

described above is shown in Fig. 2. The digital input has an M-

bit resolution and is connected to a pair of latches (L1 and L2). 

The latch L1 uses the interpolator clock and when the input 

changes, the digital M-bit comparator CMP generates a short 

inequality pulse indicating that the successive samples 

appearing at the L1 input and output are different. The 

comparator output controls the reset of a counter that counts the 

sample appearance (C) through the Control Signal Generator. 

This logic is also responsible for updating the output of L2 

(through the signal Enable) so that the previous different input 

is displayed by the L2. In this way L1 and L2 always hold the 

successive different values (e.g., yn and yn+1). 

The Adder of Fig. 2 is used to estimate the average of yn 

and yn+1. If |yn-yn+1|≤1 then the interpolated value would be 

equal to yn and the method would not have achieved any 

improvement. For this reason, the output of the interpolator has 

1-bit higher resolution than the input (M+1 bits) and what is 

available at the output V is the double of the values yn and yn+1 

and their sum (yn+yn+1) instead of their average. The 

multiplexor outputs either the previous ADC value (shifted left 

by one bit or simply padded with a 0 as its Least Significant Bit 

- LSB), or the adder output and is controlled by the Control 

Signal Generator too. An external system can sample the (V, 

C) pairs at the appropriate time indicated by the Control Signal 

Generator and these pairs form the compressed output of the 

interpolator. 

III. ERROR CORRECTION RULES 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  The proposed interpolation method with no error correcting rules. 

The error correction rules described here have been 

incorporated in a VHDL description implemented with 

reconfigurable hardware. Some specific features have to be 

taken into consideration in the case of acoustic and image 

signals. For example, in an acoustic signal with a long pause 

(with value 0) interval that is interrupted by a loud sound (with 

value yl>>0) the interpolator would replace a large number of 

pause samples with the value yl/2. This would cause significant 

distortion. Similarly wide dark areas in an image interrupted by 

bright islands (or vice versa) will suffer from distortion since a 

lot of stripes will appear by the replacement of several dark 

pixels in a row with pixels having intermediate brightness. 

For this reason the interpolation is deactivated when either 

of the following conditions hold since a sudden, not smooth 

transition is recognized in the sound or image signal (the 

parameters Th1 and Th2 are application specific thresholds): 

 11 Thyy nn    

 21 ThNN nn    

In the case of exponential or logarithmic input signals some 

different correction rules can be adopted that are simplified in 

order to be implemented with comparisons, additions and 

subtractions only. The following rules are based on the fact that 

the interpolator generates a new intermediate value between 

two successive known samples. If three successive known 

samples at regular intervals are considered the type of 

curvature of the input signal can be recognized as well as its 

slope. 

The general form of a logarithmic signal is yk=αlog(k)+ γ 

where k≥1. If γ is 0 and α is 1 its form is the one shown in Fig. 

3. The interpolated value yk is estimated as the sum of yk-1 and 

yk+1. The ratio of the estimation error E1 between the real value 

of yk and the estimated one: kŷ , to the error E2 between the 

real value of the sample yk-1 and the one that would have been 

estimated ( 1
ˆ
ky ), had the samples yk-3 and yk+1 been used is: 
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Equation (7) shows that the ratio E2/E1 for a logarithmic 

function does not depend on the factors α and γ, but depends on 

the index k. The ratio E2/E1 in (7) is not defined for k<4 and 

approaches 4 when k∞ as can be shown by the L’ Hopital 

theorem for the derivatives of a ratio. 

An exponential signal is yk=βe
αk

+γ. In a similar manner: 
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If α>0 and β>0, then yk is monotonically increasing and the 

ratio E2/E1 is between the values 1 and 2, thus E1≤E2≤2E1. 
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The same holds if β<0 but in this case yk is monotonically 

decreasing. If α<0, then E2>2E1. These relations between E1 

and E2 depend only on the parameter α and not the index k. 

By comparing the values of the known samples yk-3, yk-1 

and yk+1, it can be determined whether the input signal is 

monotonically rising or falling (provided of course that the 

three known samples are close enough) and whether it is 

increasing (or decreasing) in an exponential or logarithmic-like 

way. The latter can be determined by the differences    yk-1-yk-3 

and yk+1-yk-1. Using this information the relation between E1 

and E2 is determined and the calculated kŷ is shifted towards 

yk. For example, if yk+1≥ yk-1 ≥yk-3 and       yk+1-yk-1≥yk-1-yk-3 

then the signal is recognized as a monotonically increasing 

exponential and the relation E1≤E2≤2E1 should hold.         

E2= yk-3+yk+1-2yk-1 is estimated from known sample values. 

In the calculation of E1=yk-1+yk+1-2yk, the estimated yk sample 

value is modified appropriately in order to fulfill the closest of 

the relations: 1≤E2/E1 or 1≤2E1/E2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Interpolation of a logarithmic signal. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Experimental setup. 

IV. EXPERIMENTAL SETUP 

The experimental setup shown in Fig. 4 was used in order 

to test the developed interpolator that has been described in 

VHDL and implemented using an Altera DK-Start 3C25N 

evaluation board with Altera Cyclone III EP3C25N FPGA. The 

audio and image input stimuli as well as the interpolator 

outputs were transferred from/to the Host Computer through 

USB. The results were processed in MATLAB in order to 

measure the MSE/NMSE errors. The maximum interpolator 

clock is determined by the on-board oscillator of the DK-Start 

3C25N (50 MHz) and was selected as 1 usec. As already 

mentioned an 8-bit input and 9-bit output interpolator required 

583 LEs of the specific FPGA. 

Fig. 5a shows the input/output of the interpolator signals 

during simulation at Modelsim. Fig. 5b shows a zoomed-in 

window of Fig. 5a where the generated interpolator output is 

shown more clearly. The top signal (Ext_ADC_out) of Fig. 5 is 

actually the input of the interpolator and its 8-bit values are 

displayed in decimal. The 2
nd

 and 3
rd

 signals (Ext_Out_Cnt1, 

Ext_Out_Val1) are the compressed outputs (C, V) of the 

interpolator. The 4
th
 signal is the uncompressed interpolator 

output generated by a decompressor that has also been 

developed to test multiple interpolator stages. For example, the 

values 104 and 105 at the input are doubled at the compressed 

output (values 208 and 210) and the intermediate value (209) is 

generated. This value appears clearly at Fig. 5b along with the 

value 218 at the Ext_Out_Cnt1 signal that indicates that 209 (as 

well as 210) have to appear for 218 interpolator clock pulses at 

the uncompressed output. 

A portion of a reconstructed violin G-tone appears at Fig. 6. 

The correction rules described in Section 3, were applied in 

Fig. 6a while in Fig. 6b no logarithmic or exponential 

correction was applied. However the rules that deactivate the 

interpolator if (5) or (6) hold, were applied, otherwise the MSE 

would be much worse. An 8-bit resolution signal is used as 

input to the interpolator while a 10-bit resolution version of the 

same signal is used as a reference. The 9-bit interpolator output 

also appears in this figure. A best-fit to the 10-bit reference 

signal has been applied for both the interpolator input and 

output in order to find the minimum MSE which was 15.3 for 

the interpolator input and 13.42 for its uncorrected output and 

13.29 for the corrected output. Thus, the interpolator achieved a 

12.28-13.13% improvement in the MSE. 

Fig. 7a shows an infrared image from a night-watch camera 

in grayscale. A 3-bit resolution version of this image is shown 

in Fig. 7b, while the corrected interpolator output is shown in 

Fig. 7c. The MSE of the images in Fig. 7b and 7c are 170 and 

150 respectively achieving 11.76% improvement in the MSE. 

A 2MHz and a 5MHz sinusoidal signal with 8-bit 

resolution were also tested as inputs of the developed 

interpolator. The initial SNDR that was 22dB and 13dB 

respectively was increased at 28dB and 18dB at the output of 

the developed interpolator. The SFDR was also increased from 

27dB to 33dB for the 2MHz signal and from 18dB to 24dB for 

the 5MHz signal. 
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Fig. 5.  Simulation of the interpolator in Modelsim (a) and zoom-in (b). 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
820

840

860

880

900

920

940

960

980

1000

time (usec)

n
o
rm

a
liz

e
d
 v

a
lu

e
s
 a

t 
1
0
-b

it
s

Violin G-tone (with correction)

 

 

ADC Output

Interpolator

Original

          

0 500 1000 1500 2000 2500 3000 3500 4000 4500
820

840

860

880

900

920

940

960

980

1000

time (usec)

n
o
rm

a
liz

e
d
 v

a
lu

e
s
 a

t 
1
0
-b

it
s

Violin G-tone (no correction)

 

 

ADC Output

Interpolator

Original

 
(a)          (b) 

Fig. 6.  Reconstructing a part of a violin G-tone with correction rules (a) and without correction rules (b). 

 

 

         
(a)     (b)    (c) 

Fig. 7.  Infrared night-watch. Original image (a), 3-bit resolution (b) and interpolator output (c). 

Table 1, describes the improvements achieved by the 

referenced approaches. The measures used in each reference 

are not strictly comparable but as was shown in [11] the 

proposed interpolator implemented with 3-stages can achieve 

significant improvement in the SNDR of up to 100% which is 

comparable or higher than the referenced approaches.  

Although the improvement in the MSE of real audio signals 

and images is lower, the fact that the interpolator 

implementation requires extremely lower hardware resources 

compared to the referenced approaches, along with its 

capability to perform compression, makes it valuable for 

several applications in the IoT domain. 

I. CONCLUSIONS 

A very low complexity linear interpolator, appropriate for 

the improvement of sensor indications was presented in this 

paper. It can be implemented with less than the 3% of the 

resources offered by a low cost FPGA like Altera Cyclone III 



EP3C25N. The improvement in the representation of audio and 

image signals was examined as a case study demonstrating how 

IoT applications can benefit from the use of such an 

interpolator. The MSE of the real signals tested was improved 

by about 15%. Real time compression can also be performed 

by the proposed interpolator. Future work will include the 

implementation of the proposed interpolator in Application 

Specific Integrated Circuits (ASICs). 

 

TABLE I.  COMPARISON WITH OTHER APPROACHES 

Ref Improvement Conditions-Notes 

[2] 
SNDR increased from 

51dB to 69dB  

300kHz signal oversampled at 

3MS/s.  

[3] 
ADC Resolution 
increased by from 10 to 

14-bits (40%)  

INL correction 

[5] 

MSE close to optimal 
when interpolation rate 

is 4 

30% higher MSE when 
interpolation rate is 1. The gap is 

closed gradually when 

interpolation rate increases 

[6] 

PSNR of various 

interpolation schemes 

between 22.5dB and 
24.5dB 

Including bicubic and minmax 

regret interpolation methods 

[7] 

22.5%-35% increase of 

the SSIM of a low 
resolution image 

Compared to several other 

techniques that achieve 12%-28% 
improvement 

[8] 

Average 

PSNR=26.45dB 
Average SSIM=0.792 

Compared to Linear Filtering 

interpolation (LFI) (Cubic Spline-
CS, Lanczos) and Edge 

Directional Interpolation (EDI) 

(NEDD, LSMD) that achieve 
average PSNR between 25.54dB 

and 26.19dB and SSIM between 

0.768 and 0.778. 

[11] 

- SNDR increased by 

20%-100% (from 

34.7dB to 42.1dB or 
from 22dB to 40dB) 

- SFDR increased by 

100% (from 27dB to 
54dB) 

Tested on sinusoidal signals. The 

results here retrieved by a 3-stage 

interpolator  

This 

work 

Audio signal MSE 

improved by 13% (from 

15.3 to 13.29-13.42) 
Low res/tion image 

MSE improved by 
11.76% (from 170 to 

150) 

One stage interpolator. 

3% of the LEs of an Altera 

Cyclone III EP3C25N FPGA used 
for a 9-bit resolution. 

Compression performed with a 
rate of downto 11%. 
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