
Linear Interpolation in Time Domain for Improved

Audio or Image Signal Reconstruction

Nikos Petrellis

Dept. of Computer Science and Engineering

TEI of Thessaly

41110 Larissa, Greece

npetrellis@teilar.gr

Abstract— An extremely low cost and complexity hardware

linear interpolator is presented in this paper used for the

improved reconstruction of audio or image signals like the ones

produced by surveillance optic or infrared cameras, X-ray

images, sound detectors, microphones etc. Real time compression

can also be performed if the audio or image signal has long

sequences of identical values. A set of appropriate correction

rules for exponential or logarithmic curves that are based on

simple operations like shifts and comparisons can be employed

since several parts of a signal can be approximated by such

exponential or logarithmic curves. Applications in the Internet of

Things (IoT) area can benefit from such an interpolator-

compressor since lower resolution/power Analog Digital

Converters (ADCs) can be used in lighter transceivers that

exchange information with lower data rate. An improvement of

about 15% in the Mean Square Error (MSE) has been measured

using real signals. An interpolator with 9-bit input resolution can

be implemented with only 583 Logic Elements (LE) i.e., less than

3% of an Altera Cyclone III EP3C25N Field Programmable Gate

Array (FPGA) resources.

Index Terms— linear interpolation, image enhancement, audio

enhancement, compression

I. INTRODUCTION

The interpolation methods have been used for accurate

continuous signal reconstruction by a number of discrete

samples. The fundamental and easier to implement

interpolation methods are the zero-order hold (which is actually

the output of a Digital to Analog Converter-DAC) and the

linear (or first-order hold) interpolation in the time domain.

More sophisticated methods are the higher order interpolation

methods in time domain like the cubic spline interpolation [1]

or in the frequency domain: Lagrange, min-max interpolation,

etc. The time domain linear interpolation is the most

appropriate for low complexity hardware implementation since

most of the other methods require more complicated operations

(multiplications, divisions, matrix inversion, etc).

Interpolated values can be used for the approximation of

missing data samples retrieved by ADCs that operate with low

sampling rate. Although advanced signal approximation

techniques can be implemented in software for off-line signal

processing, these approaches are not appropriate for real-time

operation that is necessary in IoT applications where there is an

abundance of signal sources. Low order time-domain

interpolators have been studied for decades but their low

complexity/cost architecture remains the most appropriate for

real time hardware implementations. In any case, the cost of the

interpolator should not exceed the benefit from the use of a

lower resolution ADC.

A linear interpolator is described in [2] where several

interpolated values are inserted between successive known

samples with the typical resolution increasing from 8 to 12 bits.

The interpolator described in [2] has been fabricated in a 1×1

mm
2
 CMOS integrated circuit. Several ADC output post-

processing modules have been proposed for the correction of

Differential or Integral Non-Linearity (DNL/INL) static errors.

A histogram approach corrects the INL error of an ADC in [3]

increasing its resolution by 4-bits.

Min-max and Lagrange interpolators are used in [4].

Several interpolating schemes are examined in [5] and [6] by

Y. Eldar and T. Michaeli. The MSE for various parameters

including interpolation rate is examined in [5]. The MSE is

30% higher than the optimal one for interpolation rate equal to

1 while the gap closes soon when the interpolation rate

increases to 4. The authors measure the Peak Signal to Noise

Ratio (PSNR) in [6] in various image reconstruction cases.

An adaptive example-based Super-Resolution (SR) method

with a novel classification approach is presented in [7]. For the

comparison against several other approaches, the Structured

Similarity (SSIM) is used. Both SSIM and PSNR are used to

compare the proposed interpolation method in [8] against

Linear Filtering interpolation (LFI) (Cubic Spline-CS,

Lanczos), Edge Directional Interpolation-EDI (NEDD, LSMD)

methods.

As can be seen from the previous approaches different

measures are used to demonstrate the quality of a proposed

signal reconstruction method. The expected errors from various

types of interpolators (linear, RC, Butterworth n-pole low pass

filter) used at the output of ADCs is formally described in [9].

The SSIM is defined in [10].

In the first-order interpolation, the connection between two

successive ADC samples is assumed to be linear. The shorter

the successive sample distance is, the smaller the error of the

first-order hold is. The curvature between the two successive

values cannot be modeled by the first-order hold. The linear

interpolation scheme described here is based on a first-order

interpolation in the time domain that can be implemented with

low cost hardware that does not require more complicated

yn

yn+1

(yn+yn=1)/2

ec

N samples

N/2 N/2

εs

operations than additions, comparisons and counters. Error

correction rules are defined for the case where the whole input

signal or a part of it is logarithmic or exponential. Although

there cannot be a common correction method for all types of

curves, a strategy that reduces the error in the most common

cases is adopted and tested.

The proposed interpolation method can increase the Signal

to Noise and Distortion Ratio (SNDR) as well as the Spurious

Free Dynamic Range (SFDR) of sinusoidal signals by up to

100% as was shown in [11]. In the present work we focus on

real audio and image signals and see that a significant

improvement of up to 15% can be achieved in their quality.

The interpolator described in this paper can also perform real

time compression in the case of sparse or signals with long

sequences of identical samples. For example, the output of the

pressure sensor was compressed to the 11% of its original size.

This is due to the fact that the compressed output represents the

signal in pairs of the form (V, C) where the V is a sample value

that appears C times. However, if no identical values appear in

successive samples in the original signal then no compression

can be achieved.

The proposed interpolator was evaluated using

reconfigurable hardware. An interpolator with 9-bits output

along with its decompression unit required 583 Logic Elements

(LEs) or less than 3% of the LEs of a Cyclone III EP3C25N

FPGA.

The interpolation method and the corresponding

architecture are described in Section 2. The error correction

rules that can be employed when the input signal is exponential

or logarithmic are presented in Section 3. Finally, experimental

results are discussed in Section 4.

Fig. 1. The proposed interpolation method with no error correcting rules.

II. INTERPOLATION METHOD

The proposed interpolation method is a combination of zero

and first order hold as can be seen from Fig. 1. The continuous

line is the real signal while the dashed line corresponds to the

output of a DAC that would accept the discrete values yn, yn+1,

etc at its input. These values can have been retrieved by an

ADC that samples a real signal y(t) at the intervals n∙Ta,

n=1,2,.. where Ta is the ADC clock period. Each one of the

yn=y(n∙Ta) values appears for N interpolator clock periods Ti.

The interpolator clock frequency fi is equal or higher than the

ADC sampling frequency thus, each yn value appears multiple

times at the DAC input. The ratio of the interpolator clock

frequency and the ADC sampling rate may be in the order of

10 or higher but this can be achieved easily since it is

performed by digital circuits while the sampling rate of the

ADC is harder to be increased due to the conversion latency.

Assuming yn appears for N samples it is obvious that all but the

first of these samples have an error:

)()(aiai nTytnTy  with ai Tt   

For monotonically increasing or decreasing y(t) in the

interval [n∙Ta,(n+1)Ta), the sum of the absolute error of all the

N samples is decreased if half of them is replaced by the value

(yn+yn+1)/2 as shown in Fig. 1. Consider for example a

monotonically increasing y(t). By definition:

)()()(0 1 iaiaa tnTytnTynTy  

It is obvious from (1) and (2) that:

 10     

where ε0 is 0 if the ADC and DAC are ideal or equal to ec

(see Fig. 1) if the ADC and DAC are non-ideal. If the last N/2

samples of the interval between yn and yn+1 are replaced by the

value: (yn+yn+1)/2, the error εi΄ (N/2≤i<N) of these samples are

lower than εi since:



iaia

aa
ia

a
aa

aaa

aa

nTytnTy

TnynTy
tnTy

nTy
TnynTy

nTyTnynTy

nTyTny

 













')()(

2

))1(()(
)(

)(
2

))1(()(

)(2))1(()(

)())1((

 

The dotted line in Fig. 1 shows the resulting interpolated

signal. The replacement process described above can be

recursively applied in order to estimate additional intermediate

points. The generated intermediate points belong to the piece of

line of a first-order hold. If the input signal does not change

monotonically between successive sample values, a lower

approximation error is not guaranteed. This may occur when

the successive ADC outputs are retrieved using excessively

long sampling intervals, compared to the signal frequency.

The error improvement that is achieved by recursive

interpolations is gradually decreasing since they are applied on

estimated intermediate values that are not identical to the real

ones. For this reason, it is not worth using more than 3-4

interpolation stages because the cost increases for a negligible

gain in the linearity. In [11] a three-stage interpolator has been

tested with sinusoidal signals improving their linearity

(expressed as SNDR) by up to 100% if the initial resolution is

too low. Multiple stage interpolation can also be beneficial in

the case of sensor signals that change with a slow rate.

However, in the case of signals representing acoustic sound and

images multiple interpolation stages do not show a significant

error improvement and are not studied in this work.

The architecture of a circuit implementing the interpolator

described above is shown in Fig. 2. The digital input has an M-

bit resolution and is connected to a pair of latches (L1 and L2).

The latch L1 uses the interpolator clock and when the input

changes, the digital M-bit comparator CMP generates a short

inequality pulse indicating that the successive samples

appearing at the L1 input and output are different. The

comparator output controls the reset of a counter that counts the

sample appearance (C) through the Control Signal Generator.

This logic is also responsible for updating the output of L2

(through the signal Enable) so that the previous different input

is displayed by the L2. In this way L1 and L2 always hold the

successive different values (e.g., yn and yn+1).

The Adder of Fig. 2 is used to estimate the average of yn

and yn+1. If |yn-yn+1|≤1 then the interpolated value would be

equal to yn and the method would not have achieved any

improvement. For this reason, the output of the interpolator has

1-bit higher resolution than the input (M+1 bits) and what is

available at the output V is the double of the values yn and yn+1

and their sum (yn+yn+1) instead of their average. The

multiplexor outputs either the previous ADC value (shifted left

by one bit or simply padded with a 0 as its Least Significant Bit

- LSB), or the adder output and is controlled by the Control

Signal Generator too. An external system can sample the (V,

C) pairs at the appropriate time indicated by the Control Signal

Generator and these pairs form the compressed output of the

interpolator.

III. ERROR CORRECTION RULES

Fig. 2. The proposed interpolation method with no error correcting rules.

The error correction rules described here have been

incorporated in a VHDL description implemented with

reconfigurable hardware. Some specific features have to be

taken into consideration in the case of acoustic and image

signals. For example, in an acoustic signal with a long pause

(with value 0) interval that is interrupted by a loud sound (with

value yl>>0) the interpolator would replace a large number of

pause samples with the value yl/2. This would cause significant

distortion. Similarly wide dark areas in an image interrupted by

bright islands (or vice versa) will suffer from distortion since a

lot of stripes will appear by the replacement of several dark

pixels in a row with pixels having intermediate brightness.

For this reason the interpolation is deactivated when either

of the following conditions hold since a sudden, not smooth

transition is recognized in the sound or image signal (the

parameters Th1 and Th2 are application specific thresholds):

 11 Thyy nn    

 21 ThNN nn    

In the case of exponential or logarithmic input signals some

different correction rules can be adopted that are simplified in

order to be implemented with comparisons, additions and

subtractions only. The following rules are based on the fact that

the interpolator generates a new intermediate value between

two successive known samples. If three successive known

samples at regular intervals are considered the type of

curvature of the input signal can be recognized as well as its

slope.

The general form of a logarithmic signal is yk=αlog(k)+ γ

where k≥1. If γ is 0 and α is 1 its form is the one shown in Fig.

3. The interpolated value yk is estimated as the sum of yk-1 and

yk+1. The ratio of the estimation error E1 between the real value

of yk and the estimated one: kŷ , to the error E2 between the

real value of the sample yk-1 and the one that would have been

estimated (1
ˆ
ky), had the samples yk-3 and yk+1 been used is:



)/)1log((

))1/()1)(3log((

log2)1log()1log(

)1log(2)1log()3log(

2

2

1

2

22

2

11

113

kk

kkk

kkk

kkk

yyy

yyy

E

E

kkk

kkk





















 

Equation (7) shows that the ratio E2/E1 for a logarithmic

function does not depend on the factors α and γ, but depends on

the index k. The ratio E2/E1 in (7) is not defined for k<4 and

approaches 4 when k∞ as can be shown by the L’ Hopital

theorem for the derivatives of a ratio.

An exponential signal is yk=βe
αk

+γ. In a similar manner:


2

22

24

)1()1(

)1()1()3(

)1(
)21(

21

2

2

1

2

a

aaa

aa

akkaka

kakaka

e
eee

ee

eee

eee

E

E


















 

If α>0 and β>0, then yk is monotonically increasing and the

ratio E2/E1 is between the values 1 and 2, thus E1≤E2≤2E1.

L1

Clock

L2

Input CMP

Adder Multiplexer

V

Enable

Control

Signal

Generator

Counter C

The same holds if β<0 but in this case yk is monotonically

decreasing. If α<0, then E2>2E1. These relations between E1

and E2 depend only on the parameter α and not the index k.

By comparing the values of the known samples yk-3, yk-1

and yk+1, it can be determined whether the input signal is

monotonically rising or falling (provided of course that the

three known samples are close enough) and whether it is

increasing (or decreasing) in an exponential or logarithmic-like

way. The latter can be determined by the differences yk-1-yk-3

and yk+1-yk-1. Using this information the relation between E1

and E2 is determined and the calculated kŷ is shifted towards

yk. For example, if yk+1≥ yk-1 ≥yk-3 and yk+1-yk-1≥yk-1-yk-3

then the signal is recognized as a monotonically increasing

exponential and the relation E1≤E2≤2E1 should hold.

E2= yk-3+yk+1-2yk-1 is estimated from known sample values.

In the calculation of E1=yk-1+yk+1-2yk, the estimated yk sample

value is modified appropriately in order to fulfill the closest of

the relations: 1≤E2/E1 or 1≤2E1/E2.

Fig. 3. Interpolation of a logarithmic signal.

Fig. 4. Experimental setup.

IV. EXPERIMENTAL SETUP

The experimental setup shown in Fig. 4 was used in order

to test the developed interpolator that has been described in

VHDL and implemented using an Altera DK-Start 3C25N

evaluation board with Altera Cyclone III EP3C25N FPGA. The

audio and image input stimuli as well as the interpolator

outputs were transferred from/to the Host Computer through

USB. The results were processed in MATLAB in order to

measure the MSE/NMSE errors. The maximum interpolator

clock is determined by the on-board oscillator of the DK-Start

3C25N (50 MHz) and was selected as 1 usec. As already

mentioned an 8-bit input and 9-bit output interpolator required

583 LEs of the specific FPGA.

Fig. 5a shows the input/output of the interpolator signals

during simulation at Modelsim. Fig. 5b shows a zoomed-in

window of Fig. 5a where the generated interpolator output is

shown more clearly. The top signal (Ext_ADC_out) of Fig. 5 is

actually the input of the interpolator and its 8-bit values are

displayed in decimal. The 2
nd

 and 3
rd

 signals (Ext_Out_Cnt1,

Ext_Out_Val1) are the compressed outputs (C, V) of the

interpolator. The 4
th
 signal is the uncompressed interpolator

output generated by a decompressor that has also been

developed to test multiple interpolator stages. For example, the

values 104 and 105 at the input are doubled at the compressed

output (values 208 and 210) and the intermediate value (209) is

generated. This value appears clearly at Fig. 5b along with the

value 218 at the Ext_Out_Cnt1 signal that indicates that 209 (as

well as 210) have to appear for 218 interpolator clock pulses at

the uncompressed output.

A portion of a reconstructed violin G-tone appears at Fig. 6.

The correction rules described in Section 3, were applied in

Fig. 6a while in Fig. 6b no logarithmic or exponential

correction was applied. However the rules that deactivate the

interpolator if (5) or (6) hold, were applied, otherwise the MSE

would be much worse. An 8-bit resolution signal is used as

input to the interpolator while a 10-bit resolution version of the

same signal is used as a reference. The 9-bit interpolator output

also appears in this figure. A best-fit to the 10-bit reference

signal has been applied for both the interpolator input and

output in order to find the minimum MSE which was 15.3 for

the interpolator input and 13.42 for its uncorrected output and

13.29 for the corrected output. Thus, the interpolator achieved a

12.28-13.13% improvement in the MSE.

Fig. 7a shows an infrared image from a night-watch camera

in grayscale. A 3-bit resolution version of this image is shown

in Fig. 7b, while the corrected interpolator output is shown in

Fig. 7c. The MSE of the images in Fig. 7b and 7c are 170 and

150 respectively achieving 11.76% improvement in the MSE.

A 2MHz and a 5MHz sinusoidal signal with 8-bit

resolution were also tested as inputs of the developed

interpolator. The initial SNDR that was 22dB and 13dB

respectively was increased at 28dB and 18dB at the output of

the developed interpolator. The SFDR was also increased from

27dB to 33dB for the 2MHz signal and from 18dB to 24dB for

the 5MHz signal.

yk-3

yk-2

yk-1

yk

yk+1
E1

E2

 Host Computer

Interpolator

(DK-Start 3C25N)

USB

(a) (b)

Fig. 5. Simulation of the interpolator in Modelsim (a) and zoom-in (b).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
820

840

860

880

900

920

940

960

980

1000

time (usec)

n
o
rm

a
liz

e
d
 v

a
lu

e
s
 a

t
1
0
-b

it
s

Violin G-tone (with correction)

ADC Output

Interpolator

Original

0 500 1000 1500 2000 2500 3000 3500 4000 4500
820

840

860

880

900

920

940

960

980

1000

time (usec)

n
o
rm

a
liz

e
d
 v

a
lu

e
s
 a

t
1
0
-b

it
s

Violin G-tone (no correction)

ADC Output

Interpolator

Original

(a) (b)

Fig. 6. Reconstructing a part of a violin G-tone with correction rules (a) and without correction rules (b).

(a) (b) (c)

Fig. 7. Infrared night-watch. Original image (a), 3-bit resolution (b) and interpolator output (c).

Table 1, describes the improvements achieved by the

referenced approaches. The measures used in each reference

are not strictly comparable but as was shown in [11] the

proposed interpolator implemented with 3-stages can achieve

significant improvement in the SNDR of up to 100% which is

comparable or higher than the referenced approaches.

Although the improvement in the MSE of real audio signals

and images is lower, the fact that the interpolator

implementation requires extremely lower hardware resources

compared to the referenced approaches, along with its

capability to perform compression, makes it valuable for

several applications in the IoT domain.

I. CONCLUSIONS

A very low complexity linear interpolator, appropriate for

the improvement of sensor indications was presented in this

paper. It can be implemented with less than the 3% of the

resources offered by a low cost FPGA like Altera Cyclone III

EP3C25N. The improvement in the representation of audio and

image signals was examined as a case study demonstrating how

IoT applications can benefit from the use of such an

interpolator. The MSE of the real signals tested was improved

by about 15%. Real time compression can also be performed

by the proposed interpolator. Future work will include the

implementation of the proposed interpolator in Application

Specific Integrated Circuits (ASICs).

TABLE I. COMPARISON WITH OTHER APPROACHES

Ref Improvement Conditions-Notes

[2]
SNDR increased from

51dB to 69dB

300kHz signal oversampled at

3MS/s.

[3]
ADC Resolution
increased by from 10 to

14-bits (40%)

INL correction

[5]

MSE close to optimal
when interpolation rate

is 4

30% higher MSE when
interpolation rate is 1. The gap is

closed gradually when

interpolation rate increases

[6]

PSNR of various

interpolation schemes

between 22.5dB and
24.5dB

Including bicubic and minmax

regret interpolation methods

[7]

22.5%-35% increase of

the SSIM of a low
resolution image

Compared to several other

techniques that achieve 12%-28%
improvement

[8]

Average

PSNR=26.45dB
Average SSIM=0.792

Compared to Linear Filtering

interpolation (LFI) (Cubic Spline-
CS, Lanczos) and Edge

Directional Interpolation (EDI)

(NEDD, LSMD) that achieve
average PSNR between 25.54dB

and 26.19dB and SSIM between

0.768 and 0.778.

[11]

- SNDR increased by

20%-100% (from

34.7dB to 42.1dB or
from 22dB to 40dB)

- SFDR increased by

100% (from 27dB to
54dB)

Tested on sinusoidal signals. The

results here retrieved by a 3-stage

interpolator

This

work

Audio signal MSE

improved by 13% (from

15.3 to 13.29-13.42)
Low res/tion image

MSE improved by
11.76% (from 170 to

150)

One stage interpolator.

3% of the LEs of an Altera

Cyclone III EP3C25N FPGA used
for a 9-bit resolution.

Compression performed with a
rate of downto 11%.

ACKNOWLEDGMENT

This work is protected under the provisional patent

1008346, published by the Greek Patent Office (Nov. 3, 2014).

REFERENCES

[1] S. A. Dyer and J. S. Dyer, “Cubic Spline Interpolation,” IEEE

Instrumentation and Measurement Magazine, vol. 4, no. 1, pp.

44-46, 2001.

[2] H. W. Wang, C. F. Chan and C. S. Choy, “High speed CMOS

digital-to-analog converter with linear interpolator,” IEEE

Transactions on Consumer Electronics, vol. 46, no. 4, pp. 1137-

1142, 2000.

[3] L. Jin, D. Chen and R. Geiger, “A digital self-calibration

algorithm for ADCs based on histogram test using low-linearity

input signals,” Proceedings of the IEEE ISCAS’05, Kobe, Japan,

pp. 1378 – 1381. May 23-26, 2005.

[4] J. J. Fuchs and B. Delyon, “Min-max interpolators and Lagrange

interpolation formula,” Proceedings of the IEEE ISCAS ’02,

Phoenix-Scottsdale, AR, No. 4, pp. 429-432, May 26-29, 2002.

[5] T. Michaeli and Y. Eldar, “High-Rate Interpolation of Random

Signals from Nonideal Samples,” IEEE Transactions on Signal

Processing, vol. 57, no. 3, pp. 977-992, Mar. 2009.

[6] Y. Eldar and T. Michaeli, “Beyond bandlimited sampling,”

IEEE Signal Processing Magazine, vol. 26, no. 3, pp. 48-68,

May 2009.

[7] T. Ogawa and M. Haseyama, “Adaptive example-based super-

resolution using kernel PCA with a novel classification

approach,” EURASIP Journal on Advances in Signal

Processing, vol. 2011, no. 138, 2011.

[8] D. S. Yoo, J. Chang, C. H. Park and M. G. Kang, “Video

resampling algorithm for simultaneous deinterlacing and image

upscaling with reduced jagged edge artifacts,” EURASIP

Journal on Advances in Signal Processing, vol. 2013, no. 188,

2013.

[9] P. Garrett, Advanced Instrumentation and Computer I/O Design,

J. Wiley and Sons, 2013

[10] Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, “Image

quality assessment: from error visibility to structural similarity,”

IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–

612, 2004.

[11] N. Petrellis, “A Scalar Interpolator/Compressor for the

Improvement of Sensor Linearity,” Proceedings of the 4th

International Conference on Wireless Mobile Communication

and Healthcare (Mobihealth), Athens, Greece, Nov. 3-5, 2014.

