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Abstract— The sub-sampling method for Orthogonal 

Frequency Division Multiplexing (OFDM) that has been recently 

proposed by the author, is extended in this paper allowing the 

Analog-to-Digital Converter (ADC) of the receiver to operate in 

low power mode, up to ¾ of the time. The predictability of the 

parity patterns generated by the Forward Error Correction 

encoder (FEC) of the transmitter when it accepts as input sparse 

data is exploited in order to define appropriate Inverse Fast 

Fourier Transform (I-FFT) input symbol arrangements. These 

symbol structures allow the substitution of a number samples by 

others that are already available on the receiver side. Moreover, 

several FFT and IFFT operations can be deactivated because 

they output zeros when they accept as input a number of 

identical values. The advantages of the proposed method are: low 

power, higher speed, fewer memory resources and most 

importantly implementation with very low cost hardware. The 

simulation results show that full input signal recovery or at least 

a very low Bit Error Rate (BER) in the order of 10-4 is possible in 

most of the cases that have been tested. 

Keywords—OFDM, Sub-sampling, ADC, Low Power, FFT, 

FEC 

I.  INTRODUCTION  

The sub-sampling method presented in this paper is an 

extension of the work described [1] and [2]. A signal can be 

reconstructed from fewer samples than those required by the 

Nyquist theorem using methods like Compressive Sampling 

(CS), Kalman filters, interpolation, etc. Some of these 

approaches are briefly described in order to examine their 

implementation complexity and their performance compared 

to the proposed method. Fewer samples can be used if the 

information exchanged is sparse or compressible and in this 

case a sampling rate close to the actual information rate can be 

used [3]. The CS techniques are based on optimization 

problems that are solved using iterative methods [4]. The 

hardware implementation of a CS algorithm can be performed 

using reconfigurable hardware [5] or DSP processors [6]. 

In [7] images with 32×32 pixels have been used and the 

Normalized Mean Square Error (N-MSE) achieved in various 

configurations ranges between 0.11 and 0.86. CS techniques 

applied for face recognition are described in [8]. Radar data 

recovery using CS techniques is discussed in [9]. The 

simulation results show that the NMSE ranges between 1.5 

and 2.5 when radar images are reconstructed with the Signal to 

Noise Ratio (SNR) being between -5dB and 4dB. In [10] a CS 

technique is applied to underwater sensor network. The data 

are expressed as sparse coefficients of a DFT and 99% of the 

energy is concentrated in 13 of the 200 coefficients.  

Signal correction can also be based on Kalman filters as in 

[11] where the MSE ranges between 10 and 22 in some of the 

examined cases and is reduced below 0.2 under specific 

conditions. In [12], the least square CS approach is described 

and Discrete Wavelet Transform coefficients are used. A 

cardiac image sequence with 35% measurements is tested. The 

NMSE measured was approximately 10
-2

. In [13], the CS 

problem is solved as a Kalman filter and the MSE measured is 

approximately 0.5 in the various cases studied while it tends to 

0 in some cases (4% sparseness degree). The channel 

estimation in OFDM environments can be handled as a CS 

problem. The NMSE in [14] is lower than 10
-5

 when 

SNR=50dB and in [15], the BER that refers to the pilots can 

be as low as 0.5×10
-3

 when SNR=11dB.  

In the work presented in this paper, the sub-sampling mode 

allows the operation of the ADC in lower power since its 

consumption is proportional to its sampling rate [16]. The 

memory requirements, the speed and the power consumption 

of the transmitter IFFT and the receiver FFT are also reduced. 

The proposed information recovery method exploits the data 

sparseness in time domain and the predictability of the parity 

bit pattern at the output of the transmitter FEC encoder when 

its input is sparse. The symbols at the transmitter IFFT input 

are arranged appropriately so that the reconstruction of the 

information from fewer samples is possible on the receiver 

side. The receiver ADC provides only the necessary samples 

and copies of these, are used to prepare the receiver FFT input. 

Some IFFT/FFT butterfly outputs can also be predicted and 

thus, the deactivation of many FFT operations is possible 

saving time and power. General OFDM infrastructures can 

benefit from the proposed system during the exchange of 

occasionally sparse information. It can also be used in systems 

that sparsify the initially non sparse data by using the 

differences of successive samples or by setting to zero samples 

with small value. The origin of the sparse data can be large 

sensor networks, surveillance cameras, traffic control sensors, 

etc. Compressed data can be transmitted over the proposed 

OFDM system and power can still be saved during the pause 

intervals between successive sessions. 

This work is different from [1] in that the maximum 

theoretical number of samples that can be omitted from the 

sub-sampling procedure is increased by 50%. Several different 



IFFT input symbol arrangements are introduced and tested 

while the exact IFFT/FFT operations that can be deactivated 

are described in detail. Different simulations than [1] and [2] 

are used to show the effect of these IFFT/FFT modifications. 

The limitations concerning the value of the padding and the 

pilot symbols have been removed in this work. In this work 

presented the exact IFFT/FFT operations that can be omitted 

are described in detail (there is no similar analysis in the [1] 

and [2]). 

This paper is organized as follows: the architecture of the 
OFDM systems and the exploited DFT properties are 
described in Section 2. Appropriate IFFT input symbol 
arrangements are described in Section 3. The description of 
the IFFT/FFT operations that can be deactivated are presented 
in Section 4. The simulation results are discussed in Section 5. 

II. OFDM ARCHITECTURE – UNDERSAMPLING METHOD 

The OFDM systems are based on the digital modulation of 

orthogonal carriers. The block diagram describing the OFDM 

transmitter and receiver architecture is shown in Fig. 1. The 

input data bits at the transmitter are used by the FEC encoder 

in order to generate the parity bits. Then, the data and the 

parity bits are interleaved (to avoid burst errors) and mapped 

to symbol constellations like q-order Quadrature Amplitude 

Modulation (q-QAM). The modulated symbols Xk with 

0≤k<N, form the input of an N-point IFFT that generates the 

complex time symbols xn with 0≤n<N. The xn symbols are 

sequentially transmitted over the communication channel after 

appending a Cyclic Prefix (CP) in order to avoid Inter-

Symbol Interference. The reverse procedure has to be 

followed at the receiver. The N complex yn symbols are 

generated from the ADC and form the input of the N-point 

FFT that generates the symbols Yk. The symbols Yk are 

mapped to the closest q-QAM constellation and demodulated 

in order to generate the data and parity bit stream. This bit 

stream is de-interleaved and decoded by an appropriate FEC 

method like Viterbi, Turbo decoding, etc. 

A typical architecture of a Recursive Systematic 

Convolutional (RSC) FEC encoder is shown in Fig. 2 and this 

specific encoder is used in the architecture described in the 

rest of this paper. Its Systematic output is connected to the 

data input. The feed forward and the feedback paths of Fig. 2, 

determine the parity output and are characterized by the 

polynomials 1+D+D
2
+D

3
 and 1+D+D

2
 respectively (D

p
 

denotes a delay of p encoder clock periods). The parity output 

generates the redundant bit used for error correction at the 

receiver. Although the data and the parity bits are often driven 

into the interleaver in an alternating manner, it has to be 

guaranteed here, that the QAM symbols will be generated 

either from parity or data bits only using buffering.  

The parity output of an encoder like the one of Fig. 2 

remains ‘0’ as long as the input is ‘0’. When a single ‘1’ 

enters the encoder input, a repeated l-bit parity pattern is 

generated at the output until a second ‘1’ appears at the input. 

Then, a different parity pattern is generated repeatedly until a 

third ‘1’ appears and so on. The length l of these repeated 

parity patterns, depends on the Trellis decoding diagram of 
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Figure 1. Architecture of the OFDM Transceiver.  

  

 

 
Figure 2. The employed RSC Encoder. 
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Figure 3. Parity Patterns generated after the first ‘1’ at the encoder 

input of Fig. 2 before and after the padding (top and bottom 

respectively). 
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Figure 4. IFFT Input Symbol Arrangements (PS0) was used in [1] (a), IFFT Input  Symbol Arrangements used in this Work: PS1 (b), PS2 (c). 



the RSC FEC encoder [16]. The length l of the Fig. 2 encoder 

is 7. The 7-bit pattern that is generated by the encoder of Fig. 

2, between the first two 1’s is shown at the top of Fig. 3. 

These repeated 7-bit patterns can be mapped directly to a 

QAM symbol if 128-QAM is used. If 16-QAM is used 

instead, a padding with a ‘0’ bit can be used at the end of each 

7-bit parity pattern in order to generate a pair of 16-QAM 

parity symbols (denoted as A and B) with predictable value 

(bottom of Fig. 3). 
The bit-interleaver is allowed to permute data and parity 

bits provided that each q-QAM symbol is generated either 
from data or parity bits only. The generated data or parity q-
QAM symbols are arranged at the IFFT input as will be 
described in the next section. The form of the IFFT input 
packet and the sparseness level of the data, allow the 
replacement of some yn symbols by others that have probably 
equal value at the receiver. Thus, the ADC can operate at 
lower sampling rate (sub-sampling mode) during specific time 
intervals leading to power consumption reduction. Some 
IFFT/FFT operations can also be skipped as will be explained 
in the next section. 

A sparseness detector can be used in both the OFDM 
transmitter and receiver in order to control the sub-sampling 
process and the deactivation of IFFT/FFT operations. Such a 
detector can be implemented as a counter of zeros at the input 
of the transmitter and the output of the receiver. A large 
sequence of zeros indicates that sparse data are exchanged 
while the end of this period can be signaled by the occurrence 
of too many errors. 

The definition of the Inverse Discrete Fourier Transform 
(IDFT) for xn and xn+N/2 with n odd, can be written as: 
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where the twiddle factors
r
Nw are defined as

Nrir
N ew /2 . The 

second sum in (1) and (2) equals to 0, if
2

N
k

k XX


 ,
2

N
k  , 

with k odd. In this case: 
2

N
n

n xx


 for odd n values. This 

condition is satisfied if all the data Xk, pad and pilot symbols 

that have been placed at odd k positions are equal. If the data 

Xk symbols have been derived by sparse data, then most of 

their values will be indeed equal while if the pad and pilot 

symbols used in the odd positions are also selected with the 

same value, it can be assumed that xn is equal to
2

N
n
x


for odd 

n values. The sub-sampling approach of [1] has been based on 

this principle (50% sub-sampling).  

In this work, we also take into consideration that many 

successive parity Xk symbol pairs can also have identical 

value if the parity prediction/padding method described 

earlier is followed. If R is the number of xn values that are 

substituted by others, then R can be up to N/4 (half of the xn 

with odd n) in [1]. Of course, some Xk symbols are not equal 

to
2

N
k
X


 (with odd k) since the input data are sparse but some 

data Xk symbols do not have trivial value. A lower error can 

be achieved if R is low, since fewer symbols are replaced by 

others with different value in this case.  

The IDFT can be expressed as follows if we focus on the xn 

with odd n and n<N/2: 
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In equation (3) it has been taken into consideration 

that nk
N

k
N

n

N
ww 
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, nk
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(

and nk
N

kNn
N ww 


)( . The first 

sum in equation (3) adds the Xk pairs at odd positions that are 

symmetric around N/4, the second sum adds the Xk pairs with 

odd k, that are symmetric around 3N/4 and the last sum adds 

the Xk pairs with even k, that are symmetric around N/2.  

It can be stated that the IFFT outputs xn and
n

Nx


2

are equal 

(n<N/2), if: (a)
k

Nk XX




2

(with odd k and k≤N/4), (b) 

kNN
k

XX 




2

(with odd k and k≤N/4) and (c) kNk XX     with 

even k and 0≤k<N/2. This can also be proved in a similar way 
for xn and xN-n, if n is odd and N/2<n<3N/4. 

The conditions (a)-(c) defined above can be used to extend 
the lower sampling rate interval by 50% and thus the 
maximum R value from N/4 to 3N/8 (75% sub-sampling 
mode). 

III. IFFT INPUT SYMBOL ARRANGEMENTS 

Fig. 4a shows the IFFT input symbol arrangement 

(denoted as PS0) used in [1]. In PS0 all the odd positions are 

mapped to data, pad or pilot Xk symbols that are assumed to 

be equal to a common value Xc. The order of the data and 

parity symbols is reversed following a pilot symbol. In this 

way, Xc values are expected in all the odd positions of the 

packet payload. The new input symbol arrangements of Fig. 

4b and 4c have been used in this paper. The padding symbols 

shown in Fig. 4a, normally appear only in the last IFFT input 

packet of a communication session and do not need to be 

considered for every IFFT input packet. The sub-carriers that 

are dedicated for padding can also be used for pilots. If pilots 

are used in the place of data symbols then, if their value is 

selected to be equal to Xc then, no additional error is expected.  



Using pilots with a different value than Xc in the place of 

data symbols, results in worse error in the same way as if the 

sparseness level of the input data was worse. The pilots can 

also be placed at the position of parity symbols and in this 

case either some parity symbols have to be punctured or the 

data payload length should be adjusted appropriately in order 

to fit the data, the pilots and all the necessary parity symbols 

in the IFFT input packet. 

In the case of the PS1 structure that appears in Fig. 4b, the 

data QAM symbols have been placed at the odd positions and 

the same holds for the N/16 data padding symbols Xc at the 

end of the packet. In this symbol arrangement the 50% sub-

sampling scheme can be followed.  

The conditions (a)-(c) of the previous section can be 

satisfied if the IFFT input symbol arrangement of Fig. 4c is 

used (PS2). In this case the 75% sub-sampling mode can be 

used. The data symbols have been placed at the even positions 

while the parity symbols have been placed in symmetric 

positions around N/4 and 3N/4. It is important that the parity 

symbols are scattered in an alternating manner around N/4, 

and 3N/4. If they are successively placed from the start of the 

packet towards its end, the conditions (a)-(b) of the previous 

section would not be valid. Consider for example the case 

where, 3/4 of the parity symbols are A1 and B1 and the rest of 

them A2 and B2. A1 is placed at the positions 1, N/2-1, 

N/2+1, N-1 and then at the positions 5, N/2-5, N/2+5, N-5 and 

so on. Then parity symbols B1 would have been placed at the 

positions 3, N/2-3, N/2+3, N-3, then at the positions 7, N/2-7, 

N/2+7, N-7, etc. The conditions (a) and (b) of the previous 

section are usable in this case. However, if these symbols had 

been placed sequentially from the start of the packet, the 

symmetric symbols around 3N/4 would be A1 and A2 (or B1 

and B2) and the condition (b) would be invalid. 

IV. MODIFIED IFFT/FFT OPERATION 

This FFT implementation by Cooley and Tukey [17] avoids 

the calculation of the same parameters multiple times. In the 

simplest case a radix-2 FFT corresponds to an N-point FFT 

that is constructed by a pair of N/2 point FFTs interconnected 

as a “butterfly” (see Fig. 5). One of these N/2-point FFTs 

accepts as input the odd positioned symbols of the N-point 

FFT and the other accepts as input the symbols from the even 

positioned global inputs. Each one of these N/2 point FFTs 

can be recursively implemented by a pair of N/4-point FFTs 

and this process can be repeated until 2 point FFTs are 

defined. The definition of the N-point DFT requires N
2
 

operations that are reduced to N∙log2N using this FFT 

implementation. The inputs in the FFT sub-blocks are bit 

reversed while the outputs are in normal order. If R is selected 

equal to N/4 in the sub-sampling mode described in the 

previous sections, then all the input pairs of the N/4-point, 

FFT-C or D of Fig. 5 with distance N/8 are equal (N/4 of the 

odd-positioned FFT inputs yn+N/2 (n<N/2) have been 

substituted by yn). If every N-point FFT input value appears 

twice, then half of the FFT output values (the ones at odd-k 

positions) will be zero according to the following expression: 
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(4)  

The dashed outputs of the FFT-C and FFT-D sub-blocks in 

Fig. 5 correspond to zero outputs of these N/4-point FFTs and 

the operations that use these zero values as inputs can be 

omitted. Of course, similar operations can be deactivated in 

the hidden blocks within the N/4-point FFTs. More 

specifically, the number of FFT multiplications and additions 

that can be omitted if R=N/4, is 3/8. If R=N/8 then FFT-D 

only will have all the odd positioned outputs zero. In this 

case, 1/8 of the additions and multiplications can be omitted. 

The IFFT on the transmitter side can be implemented with 

a similar configurable architecture as shown in Fig. 6. If the 

IFFT input symbol arrangements PS0 or PS1 are employed, 

the QAM symbols that are placed in the odd positions are 

expected to have identical values (Xc). If all the inputs of an 

IFFT are equal to Xc, then the x0 output of the IFFT is equal to 
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Figure 5. The FFT Implementation. 
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Figure 6. The IFFT Implementation. 

 



Xc and all the other outputs are 0 since: 
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The dashed lines at the outputs of the N/2-point IFFT at the 

bottom of Fig. 6 denote that they are all zero except from the 

output No. 0. The IFFT sub-blocks (with size < N/2) can be 

turned off during the sub-sampling period with a slight error 

overhead since most of the Xk values have identical values but 

a few of them will be inevitably different than Xc. A lower 

error is expected if IFFT sub-blocks with smaller size are 

turned off. 

V. SIMULATION RESULTS - DISCUSSION 

The simulation of an OFDM system with an AWGN channel 

was carried out for two combinations of N and q: N=1024, 

q=16 (Fig. 7) and N=256, q=4 (Fig. 8). The sparseness levels 

S tested were 0.5%, 1% or 2%. The number R of replaced yn 

samples was: N/4, N/8, N/16, N/32 (50% sub-sampling mode) 

and 3N/16, 3N/32, 3N/64, or N/32 (75% sub-sampling mode). 

The case where no sub-sampling is performed is also included 

as a reference. The packet structure used for the input of the 

IFFT is the PS2 that is compliant with the conditions (a)-(c) of 

Section II. As can be seen from the simulations of Fig. 7 and 8 

a lower BER can be achieved if low R, S, N values and low 

order QAM modulation are used. The combination 4-QAM 

(QPSK) and N=256 leads to the best BER since a full 

reconstruction is always possible at least if S=0.5% or S=1%. 

When S=2% a low error floor appears when R=N/4 

(approximately 10
-4

) and when R=3N/16 (close to 10
-5

).  

In Fig. 9 the OFDM system with N=1024 and 16-QAM 

modulation is used to test the effect of FFT/IFFT operation 

deactivation. The number of substituted samples is R=N/8 and 

thus, deactivating the appropriate N/8-point FFT sub-bock, 

should not affect the error. Nevertheless, larger FFT/IFFT 

sub-blocks are also turned off in the simulations to measure 

the effect of this deactivation on the achieved BER. If full 

IFFT and FFT implementation is used, a BER error floor 

close to 10
-4

 and 10
-5

 appears respectively. The tested cases 

include the following: (a) no deactivation (full FFT/IFFT 

implementation), (b) N/4-point FFT, (c) N/2-point FFT, (d) 

N/4-point IFFT and (e) N/2-point IFFT.  

The simulations of Fig. 9 were conducted using the PS1 

IFFT input symbol arrangement of Fig. 4c. Had PS2 been 

used instead, worse results would have been obtained. This is 

due to the fact that the deactivated FFT/IFFT sub-blocks are 

the ones with the odd-positioned inputs and the PS1 structure 

has mapped data symbols to the odd positions while the PS2 

structure has mapped parity symbols there. Although almost 

all of the data symbols have identical value (Xc), the parity 

symbols don’t. If the deactivated FFT/IFFT sub-blocks were 

the ones with the even positioned inputs the results would 

  
(a)      (b)     (c) 

Figure 7. OFDM with AWGN Channel, PS2, N=1024, 16-QAM Modulation and S=0.5% (a), S=1% (b), S=2% (c). 

 
(a)      (b)     (c) 

Figure 8. OFDM with AWGN Channel, PS2, N=256, 4-QAM Modulation and S=0.5% (a), S=1% (b), S=2% (c). 

 



have been reversed and the PS2 would show better 

performance than PS1. The BER is affected more by the 

deactivation of FFT sub-blocks on the receiver side than the 

deactivation of IFFT sub-blocks. This is due to the fact that 

the deactivation of larger FFT blocks than those 

corresponding to the selected R value, leads to information 

loss because some FFT blocks with non-identical inputs are 

assumed to have zero outputs. The size of the IFFT block that 

can be deactivated, depends only on the sparseness level S of 

the input data because the IFFT deactivation was based on the 

assumption that almost all of the input symbols Xk with odd-k, 

have an identical value Xc. 

The simulation of an OFDM environment with AWGN 

channel noise showed that the use of the proposed sub-

sampling technique can lead to full information recovery if the 

input data are sparse enough (S=0.5%) and the number of 

samples R that are omitted and replaced by others is below 

N/16 for the case of N=1024 and 16-QAM modulation. If S is 

higher (2%), a full information recovery is still possible at 

higher channel SNR. In 4-QAM modulation (QPSK) and 

N=256, full reconstruction was achieved in all the cases that 

have been tested with S=0.5%. A BER below 10
-3

 instead of a 

full reconstruction can be achieved in all cases if S=2%. The 

deactivation of FFT sub-blocks that accept as input the samples 

that have already replaced by others does not affect the error at 

all, as expected. However, even if larger number of operations 

(N/2 of the FFT or IFFT) is skipped and R=N/8 of the samples 

are replaced, then the effect on the BER is negligible since it 

increases from approximately 10
-5

 to 10
-4

 in the worst case as 

shown in Fig. 9 (S=0.5%).  

Several image (with S between 5% and 10%) reconstruction 

examples have also been tested with the system configurations 

examined above (not presented in detail due to lack of space). 

The maximum NMSE that appeared in these cases was in the 

order of 10
-4

. Comparing the NMSE error and the BER 

measurements of this work with the ones referenced in Section 

I, it can be stated that a higher precision is achieved with the 

proposed method than many other approaches although the 

number of samples needed is higher. The most important 

advantage of this work is that it can be implemented with very 

low cost hardware.  

VI. CONCLUSIONS 

An OFDM environment with sub-sampling support was 
described in this paper. The sub-sampling mode can last up to 
¾ of the time saving power, memory and increasing the speed. 
Although the information on the receiver side was recovered 
using fewer samples, a signal reconstruction with very low or 
no error at all was possible. The proposed method can be 
implemented with very low complexity hardware. The 
proposed OFDM system will be implemented on real 
hardware and is expected to occupy the same number of 
resources with an ordinary OFDM transceiver. 
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Figure 9. The Effect of Deactivating FFT/IFFT Operations to the BER of 

an OFDM System with N=1024, 16-QAM and PS1  
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