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Abstract—The internal wiring of high-speed VLSI is

considered for transmission line, because its structure is

very complex and high density.

In this study, we investigate synchronization phenomena

in two van der Pol oscillators coupled by transmission line

model. By using the computer simulations, we confirm

several types of synchronization states such as coexistence

in-phase and anti-phase by changing the circuit parameter.

1. Introduction

Recently, the synchronization observed from coupled os-

cillators and chaotic circuits systems have been studied ac-

tively [1], [2]. It is important to investigate basic syn-

chronization observed in coupled oscillatory systems for

future engineering applications such as chaotic communi-

cation and chaotic cryptography. In high-speed VLSI, the

internal wiring is considered for transmission line because

the structure of high-speed VLSI is complex and high den-

sity. However, there are not many discussions about effect

caused by transmission line model for coupled oscillatory

systems.

In our previous study, the synchronization of two chaotic

circuits with transmission line coupled by the cross talk

have been investigated [3]-[7]. We have observed in-phase

and anti-phase synchronization phenomena from these cir-

cuits in computer simulations (see Figs. 1, 2) [6]. In this

system model, the part of inductor and capacitor of chaotic

circuit is modeled by transmission line. The synchroniza-

tion of oscillators coupled by transmission line using the

ladder circuit of inductor and capacitor is not really inves-

tigated.

This paper presents synchronization phenomena in two

van der Pol oscillators coupled by transmission line model.

We model transmission line using ladder circuits of induc-

tor and capacitor as lossless transmission line. By using

the computer simulations, several types of synchronization

states such as coexistence in-phase and anti-phase are con-

firmed by changing the circuit parameter.

Figure 1: Two Chua’s circuits with transmission lines.

(a) In-phase (coupling capacitors).

(b) Anti-phase (mutal inductors).

Figure 2: Synchronization states.

2. Two van der Pol Oscillators Coupled by Transmis-

sion Line Model

Figure 3 shows the conceptual circuit model of this

study. Two van der Pol Oscillators are coupled by trans-

mission line as shown in Fig. 4.

Next, we develop the expression for the circuit equations

of the circuit model as shown in Fig. 4. The vk − iRk char-

acteristics of the nonlinear resistor are approximated by the

following third order polynomial equation,

iRk = −g1vk + g3vk
3 (g1, g3 > 0), (k = 1, 2). (1)
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Figure 3: Conceptual circuit model.
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Figure 4: Two van der Pol Oscillators coupled by transmission line model.

The normalized circuit equations governing the circuit

are expressed as [van der Pol Oscillator]
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[Transmission Line Model]
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In this equations, ε denotes nonlinearity of the oscillators.

α and β denote the ratio of inductor and capacitor of the

oscillators and transmission line, respectively.

For the computer simulations, we calculate Eq. (3) using

the fourth-order Runge-Kutta method with the step size h =

0.005. The parameter ε is fixed with 0.1.

3. Synchronization Phenomena

3.1. Attractor

Figures 5-7 show the attractors and the lissajous when

the parameters α and β are changed.

In the case of α=β=1.0, coexistence of in-phase and anti-

phase states of periodic solutions are observed as shown in

Fig. 5. Figure 6 shows the simulation results when α and

β are set to 1.9. In this case, we also confirm coexistence

of in-phase and anti-phase state. We confirm that the torus

attractor can be obtained when two oscillators are synchro-

nized at in-phase, while the periodic attractor is generated

when two oscillators are synchronized at anti-phase.

X1 X2 X1

X2y1, 3 y2, 4

(a) In-phase.

X1 X2 X1

X2y1, 3 y2, 4

(b) Anti-phase.

Figure 5: Attractor (α = 1.0).
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Figure 7 shows the results when α and β are set to 2.4

and 3.0. In the case of α=β=2.4, torus attractor can be ob-

served. In the case of α=β=3.0, two oscillators generate the

periodic attractor. In the case of α=β=5.0, we observe co-

existence of in-phase and anti-phase states again as shown

in Fig. 8.

By increasing the value of α and β, only in-phase state

can be observed (see. Fig. 9). Namely coexistence of in-

phase and anti-phase disappears if the ratio of α and β is set

to large values.

X1 X2 X1

X2y1, 3 y2, 4

(a) In-phase.

X1 X2 X1

X2y1, 3 y2, 4

(b) Anti-phase.

Figure 6: Attractor (α = 1.9).
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(a) α=2.4.

X1 X2 X1

X2y1, 3 y2, 4

(b) α=3.0.

Figure 7: Attractor (α=2.4, 3.0).

3.2. Bifurcation diagram

Next, we consider one parameter bifurcation when the

parameters α and β are changed. Figure 10 shows the

simulation results when initial condition is set to in-phase

X1 X2 X1

X2y1, 3 y2, 4

(a) In-phase.

X1 X2 X1

X2y1, 3 y2, 4

(b) Anti-phase.

Figure 8: Attractor (α=5.0).

X1 X2 X1

X2y1, 3 y2, 4

Figure 9: Attractor (α=8.0).

and anti-phase mode, respectively. We can observe coex-

istence with different solutions when α, β is smaller than

2.3. By increasing the parameter α and β, only one so-

lution exists. Furthermore, we observe periodic window

around α=β=2.35 (see. Fig. 11).

3.3. Phase Difference

In this subsection, we calculate the phase difference be-

tween two oscillators. The simulation result of the phase

difference is shown in Fig. 12. We can observe coexistence

with different solutions when α, β is smaller than 2.3 as

known from the bifurcation diagram. When the parameters

α and β is larger than 2.3, in-phase synchronization disap-

pear and only anti-phase synchronization is observed. Af-

ter that, coexistence of in-phase and anti-phase states can

be observed around α=β=5.0. Finally, by increasing the

value of α and β, only in-phase state can be observed.

In order to confirm the switching several synchronization

states, Fig. 13 shows the expanded graph of Fig. 12. From

this figure, we can see that synchronization state is classi-

fied in in-phase, anti-phase, coexistence and asynchronous

states depending on the parameter. Investigation of syn-

chronization state with small step size of the parameter is

one of our future work.
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(a) Initial condition: In-phase mode.

(b) Initial condition: Anti-phase mode.

Figure 10: Bifurcation diagram.
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Figure 11: Periodic solution in bifurcation.

4. Conclusions

We have investigated synchronization phenomena in two

van der Pol oscillators coupled by transmission line model.

By using the computer simulations, several types of syn-

chronization states such as coexistence in-phase and anti-

phase were confirmed by changing the circuit parameter.

In our future works, we would like to investigate effect

of the length of the transmission line and apply this model

to more complex networks such as smart grid network and

social network.
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Figure 12: Phase difference.
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Figure 13: Phase difference.
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