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Abstract—We present an algorithm for finding the
global minimum of a function with many isolated local
minimal function values whose (strict lower) sequence is
unimodal. First, we define a univariate function such that
local minimal values of the function are a unimodal se-
quence. Next, we introduce a new algorithm for finding the
global minimum of these functions and investigate the con-
vergence of the algorithm. We also present an algorithm for
finding the global minimum of multivariate functions. We
show using a numerical example that the algorithm effec-
tively finds the global minimum with only a few function
evaluations.

1. Introduction

In recent years, many deterministic and stochastic algo-
rithms have been proposed for solving a global optimiza-
tion (minimization) problem (P) of a real valued function f
of n-variables with bounded constraints:

min. f(x) = f(x1,x2,...,%,), x € D"
D' ={xeR"|x;€la;b;]}. P)

It is assumed that the function f(x)e C? has a finite num-
ber of isolated local minima x; e D" (k = 1,2,..., M).

Deterministic methods [3] repeatedly divide a given re-
gion into subregions, select a subregion in which a global
optimum is included, and give a guarantee of successfully
finding the global optimum under highly restrictive condi-
tions on objective functions (for example, Lipschitz conti-
nuity with a known Lipschitz constant). On the other hand,
stochastic methods [4] involve random sampling or a com-
bination of random sampling and local search. The latter
algorithms, called multistart based methods, can find the
global optimum with a high degree of accuracy.

However, searching spaces of those methods exponen-
tially increase with increase in the number of dimensions
in the problem (P). This phenomenon, known as the “curse
of dimensionality”, led to the abandonment of those search
methods in favour of ones using some a priori knowledge
or priori structure of the function f.

In this paper, we consider a special structure of func-
tions f such that the sequence of local minimal function
values is unimodal. The basic concept of the similar type

of functions has been described in our previous paper [6].
However, the type of those functions was not defined.

The purpose of this paper is to define of the type of those
univariate functions, to propose a more effective algorithm,
and prove convergence of the algorithm.

The remainder of the paper is organized as follows. A
problem, definitions and an example of the problem are
given as preliminaries in section 2. In section 3, algorithms
for univariate functions, their convergence properties and a
numerical example are presented. An algorithm for mul-
tivariate functions using one of algorithms for univariate
functions and the results of a numerical experiment are pre-
sented in section 4. Finally, concluding remarks are given.

2. Preliminary

2.1. Problem and Assumption

In this section and the next section, we consider a uni-
variate minimization problem (P1):

min. f(x), xeD'=[a;,b]CR. (P1)

Similar to the assumption of the problem (P), f is a twice
continuous function, and all local minima of f in [a, b] are
isolated. These minima are denoted by x! < x2 < --- < x¥,
and these function values are denoted by f* = fOd) G =
1,2,..., M).

2.2. Definitions

Definition 1 In the problem (P1), it is said to be a strictly
lower unimodal sequence (hereafter called a unimodal se-
quence) in the sequence of local minimal function values if
there exists k € [2, M — 1] for such that

alax? <okl axb < <M 0
fr>f2>> fEs fha it <o < 0

From the above definition, note that the function f has a
unique global minimal value f** = f* at the point x¥.

Definition 2 Since we deal with a minimization problem,
we will call the function u(x) a lower unimodal function
(hereafter called a unimodal function) with the unique min-
imum Xx. in the closed interval [ay, b;] if the following con-
dition holds.
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ar < Vxb < Vx% < x = u(xh) > u(x?)
Xuw < VX' < VX2 < b = u(x") < u(x?).

Definition 3 The unimodal region [5] R.(x) of a local
minimum x’ of a function f is defined as the maximum
region (interval) such that the function f is unimodal:

R.(x) ={[a', b ]| maximum interval [a’, b'],

s.t. f(x) is unimodal in [&',6']}}.  (3)

Definition 4 The radius r(x!) of the unimodal region [5]
R,(x\) = [d.,bl] at a local minimum x’ is defined as the
minimum of two distances from the local minimum x. to
both sides @’ and b of the interval:

r(x\) = min{ x! —da, b —xi . 4)

2.3. A Simple Problem and an Example

For simplifying investigation, we focus on the following
problem (P1S) as a special case of the problem (P1):

min. f(x) = u(x) + p(x), xeD'=[a;,b]  (P1S)
where u(x) is a unimodal function, and p(x) is a periodic
function with period 77 and local minima. In order for
f(x) to have many local minima, we assume the following

conditions hold for p(x) and u(x).

Condition 1. The period T? of p(x) is much less than
the width b; —a; of the interval D! =[ay, b;], that is

TP << by — ay. 5)

Condition 2. The maximum absolute value of deriva-
tives of u(x) is less than that of p(x), that is

rer[r;%l]{ldu(X)/ dal} < max { ldp(x)/dxl}. (6)
Condition 3. u(x) has the unique minimum x.., and the
point x.., also becomes one of the minima of p(x).
From x.. = argminu(x) = argmin p(x) in Condition 3,
the global minimum of f(x) = u(x) + p(x) is X...
For example, let u(x) = 0.1x> + 0.01, px) =
—-0.01cos (40mx) and D' = [-1,1]. We present the fol-
lowing univariate problem (P1SE):

min.  f(x) =u(x) + p(x)
=0.1x> + 0.01 — 0.01 cos (40mx),
xeD'=[-1,1]. (P1SE)

The problem satisfies Condition 1 and Condition 2, and
the function has 41 local minima (= (b1—a)/T? = 2/0.05 =
40) in the interval [—1, 1]. Since the unique minimum of
u(x) is 0 and O is also one minimum of p(x), Condition 3
is satisfied with x,. = argmin ., ,; f(x) = 0 [6].

3. Algorithm for Univariate Functions

3.1. Outline of the previous algorithm

The idea of our previously proposed algorithm [6] is to
use a two-stage minimizer, 1) a large-step minimizer and 2)
a small-step local minimizer, in each iteration. An outline
of the two steps is:

1) The large-step minimizer generates new points
X%, x1, ... such that any two points are included in the
d1fferent unimodal region, and then

2) the small-step local minimizer finds a local minimum
xL in a unimodal region R,(x’) from a starting point
x* € R,(x') generated by the large step minimizer.

The condition of generated points x°, x!, ... at the large-
step minimizer 1) can be formulated as follows.

VX" £V and XER,(x), X"€R,(x))

= R NR(]) =0 (7

The small-step local minimizer of 2) that finds a local mini-
mum x" is realized by a procedure ML(x*, §) with a starting
point x* and small-step § such that:

for ¥ e R,(x), xV « ML, 5) = P =x. (8

By the above investigation, it is concluded that points
1%, x!, ... generated by the lalge step minimizer converge
to different local minima xio), xi , ... by the small-step lo-

cal minimizer, that is

K X ML 8), xe— ML(x 5) = x"™#x™ (9)

From equation (1) as the definition of a unimodal se-
quence, for three points A P> KD 0 the following con-

dition of encloseing the global minimum x... holds.

FOPY > F6) < f() = x., € P (10)

An outline of the previous algorithm is as follows.

Step 1. Bracketmg the global minimum x,, by an interval
X, X77 such that F(XP) > F(x'?) < F).
Step 2. Reducing the interval [xip ,) xff)] such that x.. €

[xip ,) xf[)] until the following stop condition holds.

X € P20 and V! #x,., ) ¢ VXD (1)

In each step, a new interval [x(f’ ), X, )] is determined using

the large-step minimizer and small-step local minimizer.

3.2. Small-step Local Minimizer

For an algorithm satisfying equation (8), it is desirable
that the sequence {x*'} of points always be included in the
unimodal region R,(x.). In order to satisfy this condition
(8), the step length 6® that generates an ordinary local min-
imizer is restricted to 6 as follows:

—(k) . -
8 min{s®, §};
{ « min{ } @

XD a0 50 k=012,

- 157 -



where ¢ is set to

1

8 < ~rw, where 7., = min r(x). (12)
1<i<M

[\

Thus, the specification of a small-step mmlmlzer algo-
rithm MLuf that finds the local mlmmum x% and its func-
tion value f,f’) from a starting point x* and its function value
f* with an upper limit of step 6 and a tolerance & is

f,f’), ii))<—1‘lﬂ4ltf(fi, X, 6, €).

3.3. Modification of the previous algorithm and its con-
vergence

3.3.1. Step 1 (Bracketing the global minimum)

If points x°, x! ...

,xNV (N + 1 < M) are determined:
a1§x0<x1<~~-<xN£b1
¥l —x=A>TP (i=0,1...,N-1)

by the large-step minimizer, then from (9) these local min-

ima by the small-step local minimizer are satisfied as fol-

lows:

(0) (1)

a <30 <XV << XN <.

(13)

From the above relationship and (1), the following en-
closeing conditions of Step 1 in 3.2 hold:

JED) < f0) = xe 2]
FEE) > fD) and ST < fORT)
= x*e [, X"

2> faY) = xre YV by

(14)
FO0) >

This algorithm uses all conditions for enclosing a global
minimum, while the previous algorithm used only the sec-
ond condition of the above conditions.

It is inefficient that the procedure ML(:) is always per-
forms for each generated point x' for checking the condi-
tions (14). To overcome this problem, we usually apply the
following moderated conditions instead of (14):

FO0) < £ | D
SO > MY and fGRY < F6F) - 2) (140
FOO > > fa), - 3)

If the above conditions hold, then more reliable conditions
(14) are applied.

3.3.2. Step 2 (Reducing the encloseing interval)

If the stop condition (11) holds in the reducing interval
of Step 2, this implies that the interval is the smallest inter-
val [xip ,) X, )] including the global minimum x... From the
above fact and equation (1), we have

{ X € PV = e [ ak

FO) > fr) < V) = f s < i

Therefore, the following relationships hold.

xk 1 x() xk+1

Xow = x5, (p)
{ f** - )C]:{, f(l’) fk l f(r) fk+l
We have considered minimizing f(x) = u(x) + p(x), and
#'(0) ~ 0 around the global minimum x... In this case
f'(x) = p’(x) and p(x) is a periodical function with period
TP, Therefore if X1 x*(= x..), and x**!exist around local
minima, then

(15)

X — )Ck 1_ )Ck— xk xl;-#l_ Xpw= xk+l Xk TP
(r) (17) k+l —l ~ TP

From this result, we can replace the stop condition (11)
of Step 2 by s simpler condition:
K~ 277,

f*(P) > f*(li) < f*(l’)’ xif) _ (16)

3.4. Main Algorithm

Based on investigations in 3.1-3.3, we show the main
algorithm that finds the global minimum x.. and its func-
tion value f.. of a function f(x) in a searching region
D' = [a1, by] for a given initial point x°(= a), its function
value f°, an initial step size A, an upper limit of step size
6, a period TP and a tolerance &. The algorithm consists of
the following steps.

(fon Xu) — MGupm( f, D', % % A, 6,T?, &)
G1. (Initial Step)
a4+ A; flef(xY; brete3;
G2. (Bracketing the global minimum)
if f° < f! then brct«1; break;
for i—0 to N-2 do
xi+2 —a+ (l + 2) . A; fi+2 <—f(xi+2);
if fi > fi+l and fi+1 < fi+2
then brct—2; break; //2)of (14’)
if brct=1 then p—0; g« 1; re2;
(f(P) f:((I) f(r,) xip’) )Ciq,) )CSI)) P brk[3p(fo, fl, )CO, Xl) :
if brct =2 then
(FOXD) — MLuf(fi x5, £); (j=i,i+1,i+2);
else if brcr=3 then p—N-1; g N; r—N+1;
(f(P)f(li)f(/”’) EFP,) i‘i,) (’)) <—brk23p(fN lfN N—- 1 N)
G3. (Reducing interval enclosing the global mlnlmum)
Reduce [x7) x” until 17> f9< f P xD_xPxoTp
G4. (Last setting) x.. — x9; f., « £,

/[ 1) of (14°)

Here, brkt3p(-) is a procedure that encloses the global

minimum by three local minima such that X < x'? <

X0 P < £9D < £ from two initial points: V71, xV.

3.5. Numerical Experiment

A numerical experiment was performed for the problem
(P1SE), and the conditions of the experiment were

T? =0.05, 6 = 0277 £ = 1075, and A = 4T7.
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The algorithm found the global minimum of this func-
tion f(x) with 57 function evaluations, about 16% fewer
function evaluations than the 68 function evaluations in the
previous study [6].

4. Algorithm for Multivariate Functions

The minimization problem (Q) of a multivariate function
f(x) that is expressed by the sum of a unimodal function
u(x) and a periodic function p(x) is as follows:

min. f(x) = u(x) + p(x), x€D" = l_[ [a;,bjl. (Q)

To solve this problem, a new point x*+V is repeatedly
generated using step length o/ that is determined by min-
imizing from the previous point x® in the direction d®:

{ a® = argmin{ (@) = F(x® +ad®)},
(17

[0
x&D = x® 4 gog® - (k=0,1,2,...),

where this minimization step is called line search.

Generally, line search procedures can only find a local
minimum of the function ¢(a). Thus, even though the line
search is repeatedly applied, the possibility of finding the
global minimum of function f is low.

In order to overcome this problem, we modify the speci-
fication of algorithm MGufim into the following specifica-
tion so that the algorithm can find the global minimum
x%*D and its function value f**D from a starting point
x® e D" along the direction d®:

(f(k+l)’ x(k+l)) - MGufh ( f, D f(k), x(k), d(k), A(O), 5’ TP, e).

In the problem (Q), if u(x) is a strongly quasi-convex
function, then the function ¢() = u(x® + ad™®) becomes
unimodal for all x® € D" and d®. If conditions similar
to Conditions 1-3 hold, then the possibility of finding the
global minimum of the function f will become high.

In particular, if functions u(x) and p(x) are separable
with respect to each variable x;, that is,

n

F®) = u) + pe) = ) ) + pix},

i=1

(18)

then the global minimum of this function can be found by
applying the line search procedure MGufn along the i-th
coordinate vector e' only n-times.

We show an algorithm for finding the global minimum
x.. and its function value f,, from an initial point x© for
the above function f with periods 77 = (T7,T},...,T;).
The algorithm consists of the following steps.

(fon X2) — MGRf(f, D", fO, xO, A, 8,17, &)
for k=1 to n )

(FOD), x84 D) — MGufi( £, D" £ O, x®, ek A, 5, T] 2);
f** <_f(n+1) D X — D) :

4.1. Numerical Experiment

We used the following Rastrign’s function as a numerical
experiment:

10
f(x) =100 + Z (: - 10cos(2xy)).
i=1
X € [=5.12,5.12], (i = 1,2,...,10)
x**z(o,(),...,()), f**:()

The conditions of the experiment were as follows.

e The period of the i-th coordinate was T} = Vin, 6; =
0.277 (i =1,2,...,10), and the initial point was x© =
(-5,-5,...,-5).

The algorithm found a global minimum x,.. =
(0,0,...,0) with 380 function evaluations (480 f.e.). This
result (380 f.e.) is about 0.056% rate of the number of func-
tion evaluations required in [4] (683,875 f.e.).

5. Conclusions

We have mainly studied an algorithm for finding the
global minimum of a univariate function f(x) with many
local minima whose sequence is unimodal. This algorithm
is characterized by the use of a large-step minimizer and
a small-step local minimizer. More clear and effective al-
gorithm was able to propose than previous algorithm. Nu-
merical result showed that the algorithm efficiently finds
the global minimum with only a few function evaluations.

Moreover, we considered a multivariate function f(x)
similar to the above unimodal function and showed an al-
gorithm for minimizing a certain class of the function. The
results of a numerical example showed that the algorithm
effectively finds the global minimum.
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