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Abstract�We present an algorithm for �nding the

global minimum of a function with many isolated local

minimal function values whose (strict lower) sequence is

unimodal. First, we de�ne a univariate function such that

local minimal values of the function are a unimodal se-

quence. Next, we introduce a new algorithm for �nding the

global minimum of these functions and investigate the con-

vergence of the algorithm. We also present an algorithm for

�nding the global minimum of multivariate functions. We

show using a numerical example that the algorithm effec-

tively �nds the global minimum with only a few function

evaluations.

1. Introduction

In recent years, many deterministic and stochastic algo-

rithms have been proposed for solving a global optimiza-

tion (minimization) problem (P) of a real valued function f

of n-variables with bounded constraints:

min. f (x) ≡ f (x1, x2, . . . , xn), x ∈ Dn

Dn = { x ∈ Rn | x j ∈ [a j, b j] } . (P)

It is assumed that the function f (x)∈C2 has a �nite num-

ber of isolated local minima x∗
k
∈Dn (k = 1, 2, . . . ,M).

Deterministic methods [3] repeatedly divide a given re-

gion into subregions, select a subregion in which a global

optimum is included, and give a guarantee of successfully

�nding the global optimum under highly restrictive condi-

tions on objective functions (for example, Lipschitz conti-

nuity with a known Lipschitz constant). On the other hand,

stochastic methods [4] involve random sampling or a com-

bination of random sampling and local search. The latter

algorithms, called multistart based methods, can �nd the

global optimum with a high degree of accuracy.

However, searching spaces of those methods exponen-

tially increase with increase in the number of dimensions

in the problem (P). This phenomenon, known as the �curse

of dimensionality�, led to the abandonment of those search

methods in favour of ones using some a priori knowledge

or priori structure of the function f .

In this paper, we consider a special structure of func-

tions f such that the sequence of local minimal function

values is unimodal. The basic concept of the similar type

of functions has been described in our previous paper [6].

However, the type of those functions was not de�ned.

The purpose of this paper is to de�ne of the type of those

univariate functions, to propose a more effective algorithm,

and prove convergence of the algorithm.

The remainder of the paper is organized as follows. A

problem, de�nitions and an example of the problem are

given as preliminaries in section 2. In section 3, algorithms

for univariate functions, their convergence properties and a

numerical example are presented. An algorithm for mul-

tivariate functions using one of algorithms for univariate

functions and the results of a numerical experiment are pre-

sented in section 4. Finally, concluding remarks are given.

2. Preliminary

2.1. Problem and Assumption

In this section and the next section, we consider a uni-

variate minimization problem (P1):

min. f (x), x ∈ D1 = [a1, b1] ⊂ R. (P1)

Similar to the assumption of the problem (P), f is a twice

continuous function, and all local minima of f in [a, b] are
isolated. These minima are denoted by x1∗ < x2∗ < · · · < xM∗ ,
and these function values are denoted by f ∗

i
≡ f (xi∗) (i =

1, 2, . . . ,M).

2.2. De�nitions

De�nition 1 In the problem (P1), it is said to be a strictly

lower unimodal sequence (hereafter called a unimodal se-

quence) in the sequence of local minimal function values if

there exists k ∈ [2,M − 1] for such that{
x1∗ < x2∗ < · · · < xk−1∗ < xk∗ < xk+1∗ < · · · < xM∗
f 1∗ > f 2∗ > · · · > f k−1∗ > f k∗ < f k+1∗ < · · · < f M∗ .

(1)

From the above de�nition, note that the function f has a

unique global minimal value f ∗∗ ≡ f k∗ at the point x
k
∗.

De�nition 2 Since we deal with a minimization problem,

we will call the function u(x) a lower unimodal function

(hereafter called a unimodal function) with the unique min-

imum x∗∗ in the closed interval [a1, b1] if the following con-

dition holds.
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{
a1 ≤ ∀x1 < ∀x2 ≤ x∗∗ =⇒ u(x1) > u(x2)

x∗∗ ≤ ∀x1 < ∀x2 ≤ b1 =⇒ u(x1) < u(x2).
(2)

De�nition 3 The unimodal region [5] Ru(x
i
∗) of a local

minimum xi∗ of a function f is de�ned as the maximum

region (interval) such that the function f is unimodal:

Ru(x
i
∗) ={ [ai∗, bi∗] |maximum interval [ai∗, b

i
∗],

s.t. f (x) is unimodal in [ai, bi] } }. (3)

De�nition 4 The radius r(xi∗) of the unimodal region [5]

Ru(x
i
∗) = [ai∗, b

i
∗] at a local minimum xi∗ is de�ned as the

minimum of two distances from the local minimum xi∗ to
both sides ai∗ and bi∗ of the interval:

r(xi∗) = min{ xi∗ − ai∗, b
i
∗ − xi∗ }. (4)

2.3. A Simple Problem and an Example

For simplifying investigation, we focus on the following

problem (P1S) as a special case of the problem (P1):

min. f (x) = u(x) + p(x), x∈D1= [a1, b1] (P1S)

where u(x) is a unimodal function, and p(x) is a periodic

function with period T p and local minima. In order for

f (x) to have many local minima, we assume the following

conditions hold for p(x) and u(x).

Condition 1. The period T p of p(x) is much less than

the width b1−a1 of the interval D
1= [a1, b1], that is

T p << b1 − a1. (5)

Condition 2. The maximum absolute value of deriva-

tives of u(x) is less than that of p(x), that is

max
x∈[a1, b1]

{|du(x)/dx| } < max
x∈[a1,b1]

{ |dp(x)/dx| }. (6)

Condition 3. u(x) has the unique minimum x∗∗, and the
point x∗∗ also becomes one of the minima of p(x).

From x∗∗ = argmin u(x) = argmin p(x) in Condition 3,

the global minimum of f (x) = u(x) + p(x) is x∗∗.
For example, let u(x) = 0.1x2 + 0.01, p(x) =

−0.01 cos (40πx) and D1 = [−1, 1]. We present the fol-

lowing univariate problem (P1SE):

min. f (x) ≡u(x) + p(x)

=0.1x2 + 0.01 − 0.01 cos (40πx),
x ∈ D1 = [−1, 1]. (P1SE)

The problem satis�esCondition 1 andCondition 2, and

the function has 41 local minima (≈ (b1−a1)/T
p = 2/0.05 =

40) in the interval [−1, 1]. Since the unique minimum of

u(x) is 0 and 0 is also one minimum of p(x), Condition 3

is satis�ed with x∗∗ = argminx∈[−1,1] f (x) = 0 [6].

3. Algorithm for Univariate Functions

3.1. Outline of the previous algorithm

The idea of our previously proposed algorithm [6] is to

use a two-stage minimizer, 1) a large-step minimizer and 2)

a small-step local minimizer, in each iteration. An outline

of the two steps is:

1) The large-step minimizer generates new points

x0, x1, . . . such that any two points are included in the
different unimodal region, and then

2) the small-step local minimizer �nds a local minimum

xi∗ in a unimodal region Ru(x
i
∗) from a starting point

xk ∈ Ru(x
i
∗) generated by the large-step minimizer.

The condition of generated points x0, x1, . . . at the large-

step minimizer 1) can be formulated as follows:

∀xm,∀xn and xm∈Ru(x
i
∗), x

n∈Ru(x
j
∗)

=⇒ Ru(x
i
∗) ∩ Ru(x

j
∗) = ∅.

(7)

The small-step local minimizer of 2) that �nds a local mini-

mum x∗ is realized by a procedure ML(xk, δ) with a starting
point xk and small-step δ such that:

for xk ∈ Ru(x
i
∗), x

(k)
∗ ← ML(xk, δ) =⇒ x

(k)
∗ = xi∗. (8)

By the above investigation, it is concluded that points

x0, x1, . . . generated by the large-step minimizer converge

to different local minima x
(0)
∗ , x

(1)
∗ , . . . by the small-step lo-

cal minimizer, that is

xm,xn, x(m)
∗ ←ML(xm, δ), x(n)∗ ←ML(xn, δ) =⇒ x

(m)
∗ ,x

(n)
∗ . (9)

From equation (1) as the de�nition of a unimodal se-

quence, for three points x
(p)
∗ > x

(q)
∗ > x

(r)
∗ , the following con-

dition of encloseing the global minimum x∗∗ holds.

f (x
(p)
∗ ) > f (x

(q)
∗ ) < f (x

(r)
∗ ) =⇒ x∗∗ ∈ (x(p)∗ , x(r)∗ ) (10)

An outline of the previous algorithm is as follows.

Step 1. Bracketing the global minimum x∗∗ by an interval
[x

(p)
∗ , x

(r)
∗ ] such that f (x

(p)
∗ ) > f (x

(q)
∗ ) < f (x

(r)
∗ ).

Step 2. Reducing the interval [x
(p)
∗ , x

(r)
∗ ] such that x∗∗ ∈

[x
(p)
∗ , x

(r)
∗ ] until the following stop condition holds.

x∗∗ ∈ (x(p)∗ , x(r)∗ ) and ∀x j∗ ,x∗∗, x j∗ < (x(p)∗ , x(r)∗ ) (11)

In each step, a new interval [x
(p)
∗ , x

(r)
∗ ] is determined using

the large-step minimizer and small-step local minimizer.

3.2. Small-step Local Minimizer

For an algorithm satisfying equation (8), it is desirable

that the sequence {x(k)} of points always be included in the

unimodal region Ru(x∗). In order to satisfy this condition

(8), the step length δ(k) that generates an ordinary local min-
imizer is restricted to δ as follows: δ(k)← min{ δ(k), δ } ;

x(k+1)← x(k) + δ
(k)
, (k = 0, 1, 2, . . .),

(d)
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where δ is set to

δ ≤ 1

2
r∗∗, where r∗∗ = min

1≤i≤M
r(xi∗). (12)

Thus, the speci�cation of a small-step minimizer algo-

rithm MLu f that �nds the local minimum x
(i)
∗ and its func-

tion value f
(i)
∗ from a starting point xi and its function value

f i with an upper limit of step δ and a tolerance ε is

( f
(i)
∗ , x

(i)
∗ )←MLu f ( f i, xi, δ, ε ).

3.3. Modi�cation of the previous algorithm and its con-

vergence

3.3.1. Step 1 (Bracketing the global minimum)

If points x0, x1 . . . , xN (N + 1 < M) are determined:{
a1 ≤ x0 < x1 < · · · < xN ≤ b1

xi+1 − xi = ∆ > T p (i = 0, 1 . . . ,N − 1)

by the large-step minimizer, then from (9) these local min-

ima by the small-step local minimizer are satis�ed as fol-

lows:

a1 < x
(0)
∗ < x

(1)
∗ < · · · < x

(N)
∗ < b1. (13)

From the above relationship and (1), the following en-

closeing conditions of Step 1 in 3.2 hold:
f (x

(0)
∗ ) ≤ f (x

(1)
∗ ) =⇒ x∗∗∈ [a1, x

(1)
∗ ]

f (x
(i)
∗ ) > f (x

(i+1)
∗ ) and f (x

(i+1)
∗ ) ≤ f (x

(i+2)
∗ )

=⇒ x∗∗∈ [x(i)∗ , x(i+2)∗ ]

f (x
(0)
∗ ) > · · · > f (x

(N)
∗ ) =⇒ x∗∗∈ [x(N−1)∗ , b1]

(14)

This algorithm uses all conditions for enclosing a global

minimum, while the previous algorithm used only the sec-

ond condition of the above conditions.

It is inefficient that the procedure ML(·) is always per-
forms for each generated point xi for checking the condi-

tions (14). To overcome this problem, we usually apply the

following moderated conditions instead of (14):
f (x0) ≤ f (x1) · · · 1)
f (xi) > f (xi+1) and f (xi+1) ≤ f (xi+2) · · · 2)
f (x0) > · · · > f (xN). · · · 3)

(14')

If the above conditions hold, then more reliable conditions

(14) are applied.

3.3.2. Step 2 (Reducing the encloseing interval)

If the stop condition (11) holds in the reducing interval

of Step 2, this implies that the interval is the smallest inter-

val [x
(p)
∗ , x

(r)
∗ ] including the global minimum x∗∗. From the

above fact and equation (1), we have{
x∗∗ ∈ [x(p)∗ , x(r)∗ ] ⇐⇒ xk∗ ∈ [xk−1∗ , xk+1∗ ]

f (x
(p)
∗ ) > f (x∗∗) < f (x

(r)
∗ ) ⇐⇒ f k−1∗ > f k∗ < f k+1∗ .

Therefore, the following relationships hold.{
x∗∗ = xk∗, x

(p)
∗ = xk−1∗ , x

(r)
∗ = xk+1∗

f∗∗ = xk∗, f
(p)
∗ = f k−1∗ , f

(r)
∗ = f k+1∗

(15)

We have considered minimizing f (x) = u(x) + p(x), and

u′(0) ≈ 0 around the global minimum x∗∗. In this case

f ′(x) ≈ p′(x) and p(x) is a periodical function with period

T p. Therefore, if xk−1∗ , x
k
∗(= x∗∗), and xk+1∗ exist around local

minima, then{
x∗∗− xk−1∗ = xk∗− xk−1∗ ≈ xk+1∗ − x∗∗= xk+1∗ − xk∗≈ T p

x
(r)
∗ − x

(p)
∗ = xk+1∗ − xk−1∗ ≈ 2T p.

From this result, we can replace the stop condition (11)

of Step 2 by s simpler condition:

f
(p)
∗ > f

(q)
∗ < f

(p)
∗ , x

(r)
∗ − x

(p)
∗ ≈ 2T p. (16)

3.4. Main Algorithm

Based on investigations in 3.1-3.3, we show the main

algorithm that �nds the global minimum x∗∗ and its func-

tion value f∗∗ of a function f (x) in a searching region

D1 = [a1, b1] for a given initial point x
0(= a), its function

value f 0, an initial step size ∆, an upper limit of step size

δ, a period T p and a tolerance ε. The algorithm consists of

the following steps.

( f∗∗, x∗∗)←MGufm( f , D1, f 0, x0, ∆, δ, T p, ε )

G1. (Initial Step)

x1← x0 + ∆ ; f 1← f (x1) ; brct← 3 ;

G2. (Bracketing the global minimum)

if f 0 ≤ f 1 then brct← 1 ; break ; // 1) of (14')

for i← 0 to N−2 do

xi+2← a1 + (i + 2) · ∆ ; f i+2← f (xi+2) ;

if f i > f i+1 and f i+1 ≤ f i+2

then brct← 2 ; break ; // 2) of (14')

if brct = 1 then p← 0 ; q← 1 ; r← 2 ;

( f
(p)
∗ , f

(q)
∗ , f

(r)
∗ , x

(p)
∗ , x

(q)
∗ , x

(r)
∗ )← brkt3p( f 0, f 1, x0, x1) ;

if brct = 2 then

( f
( j)
∗ , x

( j)
∗ )←MLu f ( f j, x j, δ, ε) ; ( j = i, i+1, i+2) ;

else if brct = 3 then p←N−1 ; q←N ; r←N+1 ;

( f
(p)
∗ , f

(q)
∗ , f

(r)
∗ , x

(p)
∗ , x

(q)
∗ , x

(r)
∗ )←brkt3p( f N−1, f N, xN−1, xN) ;

G3. (Reducing interval enclosing the global minimum)

Reduce [x
(p)
∗ , x

(r)
∗ ] until f

(p)
∗ > f

(q)
∗ < f

(p)
∗ , x

(r)
∗ −x(p)∗ ≈2T p.

G4. (Last setting) x∗∗← x
(q)
∗ ; f∗∗← f

(q)
∗ ;

Here, brkt3p(·) is a procedure that encloses the global

minimum by three local minima such that x
(p)
∗ < x

(q)
∗ <

x
(r)
∗ , f

(p)
∗ < f

(q)
∗ < f

(r)
∗ from two initial points: xN−1, xN .

3.5. Numerical Experiment

A numerical experiment was performed for the problem

(P1SE), and the conditions of the experiment were

T p = 0.05, δ = 0.2T p ε = 10−5, and ∆ = 4T p.
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The algorithm found the global minimum of this func-

tion f (x) with 57 function evaluations, about 16% fewer

function evaluations than the 68 function evaluations in the

previous study [6].

4. Algorithm for Multivariate Functions

The minimization problem (Q) of a multivariate function

f (x) that is expressed by the sum of a unimodal function

u(x) and a periodic function p(x) is as follows:

min. f (x) ≡ u(x) + p(x) , x∈Dn ≡
∏

j=1,...,n

[a j, b j]. (Q)

To solve this problem, a new point x(k+1) is repeatedly

generated using step length α(k) that is determined by min-
imizing from the previous point x(k) in the direction d(k): α

(k) = argmin
α
{ φ(α) ≡ f (x(k)+αd(k)) },

x
(k+1) = x

(k) + α(k)d(k), (k = 0, 1, 2, . . .),
(17)

where this minimization step is called line search.

Generally, line search procedures can only �nd a local

minimum of the function φ(α). Thus, even though the line
search is repeatedly applied, the possibility of �nding the

global minimum of function f is low.

In order to overcome this problem, we modify the speci-

�cation of algorithm MGufm into the following speci�ca-

tion so that the algorithm can �nd the global minimum

x
(k+1) and its function value f (k+1) from a starting point

x
(k) ∈ Dn along the direction d(k):

(f (k+1), x(k+1))←MGufn ( f ,Dn, f (k), x(k), d(k),∆(0), δ,T p, ε ).

In the problem (Q), if u(x) is a strongly quasi-convex

function, then the function φ(α) = u(x(k) + αd(k)) becomes

unimodal for all x(k) ∈ Dn and d
(k). If conditions similar

to Conditions 1�3 hold, then the possibility of �nding the

global minimum of the function f will become high.

In particular, if functions u(x) and p(x) are separable

with respect to each variable xi, that is,

f (x) ≡ u(x) + p(x) =

n∑
i=1

{ui(xi) + pi(xi)} , (18)

then the global minimum of this function can be found by

applying the line search procedure MGufn along the i-th

coordinate vector ei only n-times.

We show an algorithm for �nding the global minimum

x∗∗ and its function value f∗∗ from an initial point x(0) for

the above function f with periods Tp = (T
p

1
,T

p

2
, . . . ,T

p
n ).

The algorithm consists of the following steps.

( f∗∗, x∗∗)←MGnf ( f , Dn, f (0), x(0), ∆, δ,Tp, ε )
for k = 1 to n

(f (k+1), x(k+1))←MGufn( f ,Dn, f (k), x(k), ek,∆, δk,T
p

k
, ε ) ;

f∗∗← f (n+1) ; x∗∗← x
(n+1) ;

4.1. Numerical Experiment

We used the following Rastrign's function as a numerical

experiment:

f (x) =100 +

10∑
i=1

(
x2i − 10 cos(2πxi)

)
,

xi ∈ [−5.12, 5.12], (i = 1, 2, . . . , 10)

x∗∗ = (0, 0, . . . , 0), f∗∗ = 0.

The conditions of the experiment were as follows.

• The period of the i-th coordinate was T
p

i
=
√
iπ, δi =

0.2T
p

i
(i = 1, 2, . . . , 10), and the initial point was x(0) =

(−5,−5, . . . ,−5).
The algorithm found a global minimum x∗∗ =

(0, 0, . . . , 0) with 380 function evaluations (480 f.e.). This

result (380 f.e.) is about 0.056% rate of the number of func-

tion evaluations required in [4] (683,875 f.e.).

5. Conclusions

We have mainly studied an algorithm for �nding the

global minimum of a univariate function f (x) with many

local minima whose sequence is unimodal. This algorithm

is characterized by the use of a large-step minimizer and

a small-step local minimizer. More clear and effective al-

gorithm was able to propose than previous algorithm. Nu-

merical result showed that the algorithm efficiently �nds

the global minimum with only a few function evaluations.

Moreover, we considered a multivariate function f (x)

similar to the above unimodal function and showed an al-

gorithm for minimizing a certain class of the function. The

results of a numerical example showed that the algorithm

effectively �nds the global minimum.
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