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Abstract—We discuss a property of the sequence
of approximations obtained by the simplified Newton’s
method. In the case of nonlinear functions with one
variable, it has been proved that approximations of
the simplified Newton’s method can be represented by
a power series. Therefore, the convergence of the se-
quence can be accelerated by the ε algorithm and oth-
ers. In this paper, we try to extend the result to several
variables. It is shown that approximations of the sim-
plified Newton’s method for several variables can be
represented in the same way of one variable if those
eigenvalues don’t idempotent each other. Moreover,
in the case of more than two variables, we show ex-
ceptions that can’t be represented by any power series
with constant vectors.

1. Introduction

It is difficult to solve nonlinear equations analyti-
cally because they have complicated structure in gen-
eral. Therefore, approximations of these equations are
gotten by numerical calculations. Most of those meth-
ods refine approximations by iterations. For example,
the Newton’s method is one of famous and effective
iterative methods. However, the method needs much
times to obtain Jacobian matrices and requires differ-
ential calculations of nonlinear functions at each iter-
ation. Hence, to omit calculating Jacobian matrices,
many quasi Newton’s methods that use an approxi-
mation matrix of the Jacobian Matrix have been pro-
posed [1, 2]. Those methods have complicated proce-
dures and require many memories in large problems.
On the other hand, the simplified Newton’s method
[3], which doesn’t calculate the Jacobian matrix at ev-
ery time and uses a constant matrix in the Newton’s
method, doesn’t need much calculate time and many
memories at each iteration. This method has a weak
point that the convergence is linear and takes much
time to get solutions. However, if nonlinear functions
have one variable, the sequence of approximations ob-
tained by the method is represented by a power series
[4]. Therefore, the sequence can be accelerated by the
ε algorithm [5, 6] and the Limit Estimation [7] and
others. In this paper, we try to extend the result to

several variables. It is shown that approximations of
the simplified Newton’s method for nonlinear functions
of several variables can be represented by a power se-
ries under some conditions. Moreover, in the case of
more than two variables, it is shown that there exist
exceptions that can’t be represented by any power se-
ries with constant vectors. In the following sections,
we discuss the case of only two variables to avoid com-
plicated notations but all results hold in more than
three variables.

2. Expression for Solutions By Power Series

The simplified Newton’s method to solve nonlinear
simultaneous equations

f(x) = 0

with two variables is given by the next iteration

xn+1 = xn − Gf(xn). (1)

Here, G is a constant matrix with the size of 2 × 2
and an approximation of the inverse matrix of the Ja-
cobian matrix f

′
(x) for the given function f(x). For

example, it obtains from the matrix as follows:

G = f
′
(x0)−1.

To simplify notations, a new function

g(x) = x − Gf(x)

is introduced. Then, the Simplified Newton’s method
is expressed by a simple iteration

xn+1 = g(xn). (2)

Now, we discuss a property of the sequence {xn}. We
assume that the function g(x) is differential any times
around a fixed point p. Then, the nonlinear function
g(x) can be represented by a Taylor series like

g(x) = p +
∞∑

i+j=1
0≤i,j

(x − p)i(y − q)j

(
aij

bij

)
(3)
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with constant vectors
(

aij

bij

)
. Here, the vectors are

given by

(
aij

bij

)
=




1
(i + j)!

· ∂i+jg1

∂xi∂yj
(p)

1
(i + j)!

· ∂i+jg2

∂xi∂yj
(p)


 .

The sequence {xn} converges to the fixed point p if the
given initial approximation x0 is sufficiently close to
the fixed point p and the function g(x) is a contraction
mapping. In other words, two eigenvalues α, β of the
matrix

(
a10 a01

b10 b01

)
,

which is made from the coefficients with one degree of
the Taylor series (3), satisfy the following condition

0 < |α|, |β| < 1.

2.1. Non-idempotent Eigenvalues

The sequence of the simplified Newton’s method has
a following property if those eigenvalues don’t have a
idempotent relation each other.

Theorem 1 Let non-idempotent conditions αm 6=
βn(m,n ≥ 1) satisfy. Then, the sequence {xn} ob-
tained from the iteration (2) can be represented by a
power series of two eigenvalues α, β and constant vec-

tors
(

Akl

Bkl

)
as follows:

xn = p +
∞∑

k+l=1
0≤k,l

αknβln

(
Akl

Bkl

)
(4)

for all n ≥ N . Here, N is a sufficient large integer.

[Remark] In this theorem, we can’t change the con-
dition n ≥ N to n ≥ 0 Because, sometimes, it happens∑∞

k,l Akl = ∞ or
∑∞

k,l Bkl = ∞. However, if the initial
solution x0 is given sufficiently close to the fixed point
p, it holds

x0 = p +
∞∑

k+l=1

(
Akl

Bkl

)
.

[Outline of Proof] In the following proof, we can
put p = 0 by the transformation of the coordinate
system where the fixed point p displaces to the origin
0. Moreover, from the assumption of Theorem 1, the
matrix

(
a10 a01

b10 b01

)

has different two eigenvalues. Therefore, it can be
transformed to a diagonal matrix by a regular matrix
P like

(
a10 a01

b10 b01

)
= P−1

(
α 0
0 β

)
P.

So, by a suitable transformation of the coordinate sys-
tem, we can put

(
a10 a01

b10 b01

)
=

(
α 0
0 β

)
(5)

from the beginning of this discussions without loss of
generality.

Now, let assume the expression

xn =
(

xn

yn

)
=

∞∑

k+l=1

αknβln

(
Akl

Bkl

)
. (6)

Then, arranging the next approximation xn+1 in for-
mal power series for two eigenvalues α, β, from (2), (3)
and (6), we obtain

xn+1 =
∞∑

i+j=1

xi
nyj

n

(
aij

bij

)

=
∞∑

k+l=1

αknβln

(
Ckl

Dkl

)
(7)

where constant vectors
(

Ckl

Dkl

)
are gotten by using

Akl, Bkl and determined by

(
Ckl

Dkl

)
=




k+l∑

i+j=1

aij

i∏

p=1

Akplp

i+j∏

q=i+1

Bkqlq

∑

i+j=1
0≤i,j

bij

i∏

p=1

Akplp

i+j∏

q=i+1

Bkqlq




.

Here, indexes kp, lp satisfy the following conditions

i+j∑

p=1

kp = k (0 ≤ kp ≤ k)

i+j∑

p=1

lp = l (0 ≤ lp ≤ l).

To match the equation (7) with the equation

xn+1 =
∞∑

k+l=1

αk(n+1)βl(n+1)

(
Akl

Bkl

)

for any n, it is needed to satisfy

αk(n+1)βl(n+1)

(
Akl

Bkl

)
=αknβln

(
Ckl

Dkl

)
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for all k + l ≥ 1. From the comparison of coefficients
of αknβln and (5), we obtain

(
α − α 0

0 α − β

)(
A10

B10

)
=

(
0
0

)

for k = 1, l = 0. Moreover, since α 6= β, we get

B10 = 0.

In the same way, we obtain
(

α − β 0
0 β − β

) (
A01

B01

)
=

(
0
0

)

and

A01 = 0

for k = 0, l = 1. In other cases, it holds the equation
(

αkβl − α 0
0 αkβl − β

)(
Akl

Bkl

)
=

(
Ckl

Dkl

)
.

Here, since αi 6= βj , the left matrix has an inverse one
and we obtain the next recurrent formula

(
Akl

Bkl

)
=

(
αkβl − α 0

0 αkβl − β

)−1 (
Ckl

Dkl

)
. (8)

From this formula, the values of Akl and Bkl are ob-
tained by Aij , Bij(i+j < k+ l). As a result, every Akl

and Bkl can be calculated from only two coefficients
A10 and B01. Those are determined by the initial ap-
proximation x0.

[Remark] When a formula power series is expanded,
the order of sum for double series is changed arbitrar-
ily. If these double series converges absolutely, we can
change the order of sum arbitrarily [8]. However, we
omit the proof for want of space.

If given functions have only one variable, there is
no idempotent eigenvalues obviously. Because there is
only one eigenvalue in this case. Therefore, we imme-
diately get the next corollary [4].

Corollary 1 The sequence of approximations gener-
ated by the simplified Newton’s method applying to
nonlinear functions with one variable is represented
by a power series as follows

xn = p +
∞∑

i=1

Aiλ
in

for every n ≥ N . Here, N is a sufficient large integer.
In order to verify Theorem 1, we practice an exam-

ple.

Example 1 Let a nonlinear function g(x) be

g(x) =
(

αx
βy + xy

)
.

Here, it holds 0 < |α|, |β| < 1. Then, the function can
be expanded to Taylor series at the origin 0 as follows:

g(x)=
(

0
0

)
+x

(
α
0

)
+y

(
0
β

)
+xy

(
0
1

)
.

Therefore, we get
{

a10 = α, b01 = β, b11 = 1
aij = bij = 0 (Others).

Since it holds A01 = B10 = 0 and from the recurrent
formula (8), we obtain

Akl = 0 (Akl 6= A10)

Bkl =
A10Bk−1l

αkβl − β
=





0 (l 6= 1)
Ak

10B01∏k
i=1(αiβ − β)

(l = 1) .

Therefore, we get a power series as follows:
(

xn

yn

)
=

(
A10α

n

B01β
n+B11α

nβn+B21α
2nβn+· · ·

)
. (9)

From now on, we verify this power series by numer-
ical calculations. Let put

α = 0.5, β = 0.3

and

x0 =
(

x0

y0

)
=

(
1
2

)
.

Then, from the power series (9), we get A10 = 1 and
B01 = lim

n→∞

yn

βn
. Table 1 shows the second variables

yn of the sequence {xn} of (2) and the sequence {x̃n}
of (9). Here, to seek the value of x̃n from (9), we need
the value of B01. Therefore, we use the approximation
obtained by

B01 ≈ y100

β100
= 88.7212166719551192.

Also, in the Table 1, the value of ỹn is obtained by the
sum of first hundred powers as follows:

ỹn ≈
100∑

i=0

Bi1α
inβn.

The table shows that the values of yn equal to the ones
of ỹn for n ≥ 2. Therefore, we can confirm that The-
orem 1 holds. However, for n = 0, 1, two values of the
sequences are different. The reason is that these for-
mula power series don’t converge absolutely and can’t
change the order of sum for double series. Neverthe-
less, we can use Wynn’s acceleration method [6] be-
cause the sequence is represented by a power series.
Table 2 shows the accelerated result for the sequence
{xn}.
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Table 1: Comparison of Solutions by the Simplified
Newton’s Method and by Infinite Power Series.

n yn ỹn

0 2.00000000000000 -1.37562681 ×1054

1 2.60000000000000 -5.29024380 ×1023

2 2.08000000000000 2.07999981789382
3 1.14399999999999 1.14399999999999
4 0.48620000000000 0.48619999999999
5 0.17624750000000 0.17624749999999
6 0.05838198437500 0.05838198437499
7 0.01842681381835 0.01842681381835
8 0.00567200362846 0.00567200362846
9 0.00172375735271 0.00172375735271
10 0.00052049391939 0.00052049391939
∞ 0 0

Table 2: Acceleration by Wynn’s method.

n xn ε2 ε4

0 (1.00, 2.00)
1 (0.50, 2.60) (0.51, 2.20)
2 (0.25, 2.08) (1.21, 2.88) (0.36, 0.96)
3 (0.12, 1.14) (0.11, -1.04) (0.02, 0.16)
4 (0.06, 0.48) (0.00, -0.09) (0.00, 0.01)
5 (0.03, 0.17) (0.00, -0.01)
6 (0.01, 0.05)
∞ (0, 0) (0, 0) (0, 0)

2.2. Idempotent Eigenvalues

When eigenvalues are idempotent each other, Theo-
rem 1 doesn’t holds. Now, we show such an example.

Example 2 Let a nonlinear function g(x) be

g(x) =
(

αx
βy + x2

)

where β = α2 and 0 < |α| < 1 hold. From
(

xn+1

yn+1

)
=

(
αxn

α2yn + x2
n

)
,

we obtain two power series as follows:

xn = αnx0

yn = α2yn−1 + α2(n−1)x2
0

= α2(α2yn−2 + α2(n−2)x2
0) + α2(n−1)x2

0

= y0α
2n + nx2

0α
2(n−1)

= y0β
n + nx2

0α
2(n−1).

Here, the coefficient nx2
0 of the power α2(n−1) in the

second term of yn isn’t constant and changes with n.

Therefore, in this case, we can’t express the sequence
of approximations by power series (4). However, even
in those bad cases, we can expect that the sequence of
approximations are represented by the extended for-
mula of power series like

xn = p +
∞∑

k+l=1
0≤k,l

αknβln

(
pkl(n)
qkl(n)

)
(10)

where constant coefficients Akl and Bkl are replaced
by reasonable polynomials pkl(n) and qkl(n).

3. Conclusions

In this paper, we discussed a property of the se-
quence of approximations obtained by the simplified
Newton’s method. In the same way as nonlinear func-
tions with one variable, it was shown that approxi-
mations of the simplified Newton’s method for several
variables can be represented by a power series if those
eigenvalues don’t idempotent each other. Also, in the
case of functions having more than two variables, there
existed an exception that can’t be represented by any
power series with constant vectors. However, in those
cases, it is expected that nonlinear functions can be
expressed by the extended power series with polyno-
mials. The proof is left to the future works.
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