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Abstract—The traveling salesman problem (TSP) be-
longs to a class ofNP-hard. Thus, it is required to develop
effective algorithms for finding near optimal solutions or
approximate solutions in a reasonable time frame. We have
already proposed several methods which use chaotic dy-
namics to drive a local search method, such as the 2-opt al-
gorithm or the adaptive k-opt algorithm. In these methods,
chaotic dynamics efficiently controls to avoid local min-
ima. In this paper, extending this idea, we propose a new
method for solving the TSP. In the proposed method, one of
the most powerful local search methods, the Lin-Kernighan
algorithm, is driven by chaotic dynamics. As a result, the
proposed method obtains better solutions than the conven-
tional chaotic search methods.

1. Introduction

In our world, we often face to various situations in which
reduction of operating costs is asked, for example, schedul-
ing, routing problem, circuit designing, computer wiring
and so on. These examples are formulated as the traveling
salesman problem(TSP) which is one of the famous com-
binatorial optimization problems.

The TSP is descried as follows: given a set of n cities
and distances di j between cities i and j, find an optimal
solution, or a shortest-length tour. Thus, the goal of the
TSP is to find a permutation σ of the cities that minimizes
the following quantity:

n−1∑

k=1

dσ(k)σ(k+1) + dσ(n)σ(1), (1)

where σ(k) is the kth city in a tour. If di j = d ji for all i and
j, this problem becomes a symmetric TSP, otherwise an
asymmetric TSP. In this paper, we deal with the symmetric
TSP.

The TSP generally belongs to a class ofNP-hard. Thus,
it is believed to be almost impossible to obtain an opti-
mal solution in a reasonable time frame. Therefore, it
needs to develop effective approximate algorithms for find-
ing near optimal solutions or approximate solutions. As
approximate algorithms, many local search methods, for
example, the 2-opt algorithm, the 3-opt algorithm and
the Lin-Kernighan algorithm[1], have already been pro-
posed. However, these algorithms rarely find optimal so-

lutions, because the local search methods usually get stuck
at local minima. To escape from the local minima, sev-
eral strategies have already been proposed, for example, a
tabu search method[2], a simulated annealing[3], a genetic
algorithm[4] and so on.

In recent years, we have already proposed several effec-
tive algorithms for solving TSP[6, 7, 8]. In these meth-
ods, chaotic dynamics is used to escape from the local min-
ima. To realize a chaotic search method, a chaotic neuron
model is used. The chaotic neuron model is proposed by
Aihara et al[5], which can reproduce an important prop-
erty which real nerve cells have: refractoriness. The re-
fractoriness of the chaotic neuron works to escape from the
local minima and to lead better solutions. Using this prop-
erty, the chaotic search method in which the most simple
local search method, the 2-opt algorithm (Fig. 1), is driven
by chaotic dynamics, has already been proposed[6, 7], and
exhibits better performance than the tabu search method
which has almost the same tactics of searching solutions as
the chaotic search method in a state space. Next, to improve
the performance of the chaotic search method, an adap-
tive k-opt algorithm driven by chaotic dynamics has been
proposed[8]. The adaptive k-opt algorithm is a powerful
local search method which adaptively changes the number
of exchanged links k. As a result, this method shows bet-
ter performance than the chaotic search method using the
2-opt algorithm.

i j

a(j) a(i)

i j

a(j) a(i)

Figure 1: An example of the 2-opt algorithm. In this figure,
a(i) is the next city of the city i in the current tour. Two links
i-a(i) and j-a( j) are deleted from the current tour, then two
links i- j and a(i)-a( j) are added to obtain a shorter tour.

The Lin-Kernighan algorithm is one of the most effec-
tive local search methods for the symmetric TSP. The Lin-
Kernighan algorithm improves a tour by exchanging k links
in the current tour for other k links. Then, the value of

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 144 -



k is dynamically changed. In the Lin-Kernighan algo-
rithm, as the value of k increases, better improvements are
searched. Although the Lin-Kernighan algorithm shows
the most highest performance for the TSP, this method also
gets trapped into the local minima, because this method is a
local search method. Then, if we introduce chaotic dynam-
ics to avoid the local minima for the Lin-Kernighan algo-
rithm, we realize a more effective chaotic search method.
As a result, the proposed method shows higher perfor-
mance than the conventional chaotic search methods[7, 8].

2. The Lin-Kernighan algorithm

The k-opt algorithm generally gets better solutions when
the value of k increases. However, for an n-city TSP, the
k-opt algorithm has a time complexity of O(nk) to search
a new tour. Thus, if the value of k increases to obtain the
better solutions, the computational costs increase exponen-
tially. To avoid such an issue, Lin and Kernighan proposed
a powerful variable k-opt algorithm[1]. This algorithm is
called the Lin-Kernighan algorithm, and considered to be
one of the most effective local search methods in the field
of operations research.

In the Lin-Keringhan algorithm, k links in the current
tour are exchanged for other k links to improve a solu-
tion. The Lin-Kernighan algorithm searches better im-
provements as the value of k increases. Through compu-
tational experiments, it has been indicated that the Lin-
Kernighan algorithm has a time complexity of O(n2.2) for
n-city TSPs[1].

In the Lin-Kernighan algorithm, a possible improvement
is searched by repeating a choice of a deleted link and an
added link. The procedure of the Lin-Kernighan algorithm
is shown below.

1. Let G∗ = 0 and m = 1. Here, G∗ is a value of the
best improvement in the previous search, and m is the
number of sets of deletion and addition of links.

2. Choose any city t1 from the current tour T .

3. Delete a link x1 = (t1, t2) from T . Here, xm is a link
between the cities t2m−1 and t2m.

4. Add a link y1 = (t2, t3) with the condition that g1 > 0,
where gm = |xm| − |ym| (Fig. 2(b)). Here, ym is a link
between the cities t2m and t2m+1, and |xm| is a length of
the link xm. If no such y1 exists, go to Step 10.

5. Let m increase by one. Delete xm and add ym by the
following steps (a)–(d). If such xm and ym do not exist,
go to Step 6.

(a) Delete xm to satisfy the following conditions
(Fig. 2(a)):

i. xm is not previously added.
ii. If t2m is connected to t1, the resulting con-

figuration is a feasible tour.

(b) Let T ′ be a tour constructed by connecting t2m to
t1. If f (T ) − f (T ′) > G∗, set G∗ = f (T ) − f (T ′)
and k = m, where f (T ) is a length of T and k is
the number of exchanged links to achieve G∗.

(c) Add ym to satisfy the following conditions (Fig.
2(b)):

i. ym is not previously deleted.

ii. Gm > 0, where Gm =

m∑

j=1

(|x j| − |y j|).

iii. If ym is added, a next link xm+1 exists.
iv. |xm+1| − |ym| is maximum for all candidates

of ym.

(d) If Gm > G∗, go to Step 5.

6. If G∗ > 0, construct a new tour by executing the k-opt
exchange for T , and go to Step 1.

7. If another link can be selected as y2, go to Step 5(c).

8. If another link can be selected as x2, go to Step 5(a).

9. If another link can be selected as y1, go to Step 4.

10. If another link can be selected as x1, go to Step 3.

11. If another city can be selected as t1, go to Step 2.

12. The procedure terminates.

t2m−2

t2m−1

xm

xm

ym−1

(a)

t2m

xm

ym

t2m−1

(b)

Figure 2: Examples of how to choose added and deleted
links in the Lin-Kernighan algorithm. (a) Choose a deleted
link xm. (b) Choose a added link ym

3. The proposed method

In the proposed method, the Lin-Kernighan algorithm is
driven by chaotic dynamics. To realize a method based
on chaotic dynamics, we use a chaotic neural network
(CNN) constructed by chaotic neurons[5]. In the proposed
method, each neuron is assigned to each city, and an exe-
cution of the Lin-Kernighan algorithm is controlled by an
output of the assigned chaotic neuron. If a neuron fires, the
Lin-Kernighan algorithm is executed on the corresponding
city.

The chaotic neuron has a gain effect and a refractory ef-
fect. These effects are defined by the following equations:

ξi(t + 1) = max
j
{β(t + 1)∆i j(t) + ζ j(t + 1)}, (2)
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∆i j(t) = D0(t) − Di j(t), (3)

ζi(t + 1) = −α

s−1∑

d=0

kd
r xi(t − d) + θ, (4)

where β(t) is a scaling parameter of the gain effect at
time t (β(t) > 0). This parameter increases with time t:
β(t + 1) = β(t) + γ (γ > 0). If the value of β(t) gradually
increases, a searching space is increasingly limited as the
simulated annealing[3]. In Eq.(2), ∆i j(t) is defined as a dif-
ference between a length of a current tour and a new tour.
D0(t) is a length of the current tour at time t, and Di j(t)
is a length of the new tour offered by the Lin-Kernighan
algorithm which links cities i and j. In the original Lin-
Kernighan algorithm, if an improvement is not found, an
exchange is not executed. In such a case, in the proposed
method, ∆i j(t) is set to a value of the improvement by the
2-opt algorithm which links the cities i and j. ζ j(t + 1) is a
refractory effect of the city j at time t+1. In Eq.(2), the city
j is chosen so as to maximize the value of the gain effect.
If the length of the new tour is shorter than the current tour,
the value of the gain effect becomes positive (∆i j(t) > 0).
Then, the gain effect encourages to fire the chaotic neuron.

In Eq.(4), α is a scaling parameter of the refractory effect
after a neuron firing (α > 0), kr is a decay parameter of the
refractory effect (0 < kr < 1), s is a temporal period for
memorizing past outputs, xi(t) is an output of the ith neuron
at time t, and θ is a threshold value. If a neuron has fired
for the past s steps, the right hand side of Eq.(4) becomes
negative. Namely, the refractory effect inhibits to fire the
neuron for a while.

In Eq.(4), if s − 1 = t, it means that the neuron memo-
rizes its all history from t = 0. If we use Eq.(4) directly, it
needs much amount of memory to memorize its all history.
However, Eq.(4) can be reduced to the following simple
one-dimensional difference equation:

ζi(t + 1) = krζi(t) − αxi(t) + (1 − kr)θ. (5)

Then, the output of the ith neuron is defined by the follow-
ing equation:

xi(t + 1) = f (ξi(t + 1) + ζi(t + 1)) , (6)

where f (y) = 1/(1+e−y/ε). If xi(t+1) > 1/2, the ith neuron
fires at time t + 1 and the Lin-Kernighan algorithm which
links the cities i and j is executed. Each neuron is updated
asynchronously.

In the proposed method, β(t+1)∆i j(t)+ ζ j(t+1) is calcu-
lated for all city j, then the maximum value is used as the
gain effect. If the number of cities increases, the computa-
tional costs of the gain effect increase. In general, if the city
i and the city j are located far away, the city j is not cho-
sen, because the value of ∆i j(t) is smaller than other cities.
Even if the far city j is chosen and the ith neuron fires, an
obtained new tour might be different from an optimal tour.
Then, in Eq.(2), the cities j are not necessary to be used for
execution of the algorithm. Thus, in the proposed method,

a neighborhood list is used to reduce computational costs.
If the neighborhood list size is r, only r nearest neighbor
cities of the city i are used for Eq.(2). For the same reason,
this neighborhood list is used in the Lin-Kernighan algo-
rithm. If ym which links the cities t2m and t2m+1 adds, the
city t2m+1 is chosen among the neighborhood list of the city
t2m. In this paper, the neighborhood list size is fixed to 10.

For solving an n-city TSP, the procedure of a single iter-
ation in the proposed method is shown below.

1. Let i = 1.

2. Choose the city j which maximizes the value of the
gain effect of the ith neuron from the neighborhood
list of the city i.

3. The output of the ith neuron xi(t + 1) is calculated.

4. If xi(t + 1) > 1/2, the ith neuron fires, and the Lin-
Kernighan algorithm which links cities i and j is exe-
cuted.

5. If i < n, let i = i+1 and go to Step 2. Otherwise finish
this iteration.

4. Results

To evaluate the performance of the proposed method, we
used TSPLIB instances[9]. Then, we compared the pro-
posed method with the conventional method: the adap-
tive k-opt algorithm driven by chaotic dynamics[8]. The
adaptive k-opt algorithm is one of the local search methods
which changes the number of exchanged links k similarly
to the Lin-Kernighan algorithm. However, a criterion for
how deep the two algorithm are executed is different. This
conventional method includes a tuning and an annealing of
parameters. Moreover, to diversify solutions, when better
solutions could not be found for more than 100 iterations,
the double bridge algorithm is applied. The double bridge
algorithm is a special case of the 4-opt algorithm (Fig. 4).

In the proposed method, the parameters α, kr, θ and ε are
fixed for all instances: α = 0.95, kr = 0.3, θ = 1.0, ε =
0.002. However, β(0) and γ are changed for each instance,
because a size of ∆i j(t) in Eq.(2) depends on the instance
size. The value of ∆i j(t) represents a difference between the
length of the current tour and that of the new tour. Then,
if the length of the exchanged links varies greatly, the scal-
ing parameters must be tuned to small values, because the
value of ∆i j(t) becomes larger. Namely, the value of ∆i j(t)
depends on the lengths of the links. Therefore, we use a
standard deviation(SD) of the lengths of the links to decide
the values of the scaling parameters. If the value of the SD
becomes larger, the value of ∆i j(t) becomes larger, because
the lengths of the links have wide fluctuations. Thus, the
scaling parameters should be tuned to smaller values. To
decide the values of the scaling parameters, first, we inves-
tigated good values of βc(0) and γc for an instance manu-
ally. In this paper, we used pcb1173. Next, we calculated
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the SD of the links for pcb1173. Then, we decided the
values of βI(0) and γI for an instance I by the following
equations:

βI(0) = βc(0) ×
35.194410

(the SD of an instance I)
, (7)

γI = γc ×
35.194410

(the SD of an instance I)
, (8)

where 35.194410 is the SD of pcb1173. For example,
for pcb442, βpcb442(0) = 0.008 × 35.194410

80.716443 = 0.0034882,
γpcb442 = 0.0015 × 35.194410

80.716443 = 0.00065404. Table 1 shows
the scaling parameters and the SDs for instances in this pa-
per.

Table 2 shows results of the adaptive k-opt algo-
rithm driven by chaotic dynamics with the double bridge
algorithm[8](k-opt+DB), the proposed method and the
Lin-Kernighan algorithm(LK). The Lin-Kernighan algo-
rithm is obtained by setting α = kr = θ = 0 in the proposed
method. Then it works same as the original Lin-Kernighan
algorithm. The conventional chaotic method is applied for
5,000 iteration, and the proposed method is applied for 200
iteration. The results of Table 2 are expressed by percent-
ages of average gaps between obtained solutions and the
optimal solutions. From Table 2, the proposed method ob-
tains better solutions than the conventional chaotic search
method by shorter iterations for all problems.

Figure 3: An example of the double bridge algorithm.

Table 1: The values of the scaling parameters and the SD.

problem β γ SD

pcb442 0.0034882 0.00065404 80.716443

pcb1173 0.0080000 0.00150000 35.194410

pr2392 0.0021511 0.00040334 130.886889

rl5915 0.0028917 0.00054220 97.365513

rl11849 0.0042271 0.00079259 66.606484

5. Conclusion

In this paper, we proposed a new method which
drives the Lin-Kernighan algorithm by chaotic dynamics.
From the computational experiments, the proposed method
shows better performance than the conventional chaotic
search method. In the future work, we apply the proposed
method for larger-size TSPs and compare its performance
with other heuristics.

Table 2: Results of the adaptive k-opt algorithm driven by
chaotic dynamics with the double bridge algorithm[8](k-
opt+DB), the proposed method and the Lin-Keringhan al-
gorithm(LK). For the conventional method, 5,000 itera-
tions are applied, and for the proposed method, 200 iter-
ations are applied. The results are expressed by the per-
centages of average gaps between the obtained solutions
and the optimal solutions. The best values are described in
bold faces.

problem k-opt+DB[8] LK the proposed method

pcb442 0.8246 1.2633 0.5109
pcb1173 1.5692 2.3290 1.1035
pr2392 1.8390 2.6897 0.8080
rl5915 1.7418 3.5707 1.0813

rl11849 1.1855 3.0118 1.0923
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