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Abstract—Various complex phenomena in our world
may have deterministic nature or stochastic one, or both.
Then, it is an important issue to characterize the dynamics
of these complex phenomena. Therefore, in this paper, we
propose a new method to analyze deterministic chaos from
a new point of view. In the proposed method, we first con-
struct a network from an attractor of nonlinear dynamical
systems. In this network, nodes correspond to points on the
attractor and connections between the nodes are decided
by Euclidean distance between the points on the attractor.
Next, we measure the degree of the nodes in the network.
As a result, we confirmed that the networks constructed
from chaotic attractors show different tendency from other
attractors.

1. Introduction

In the real world, various complex phenomena often oc-
cur, for example, electrical activities of neural systems such
as brain waves and nerve responses, change of weather con-
ditions, fluctuation of financial indices and so on. Although
these complex phenomena may be produced from a deter-
ministic system or a stochastic system, we suppose that
these phenomena are produced from deterministic nonlin-
ear dynamical systems.

If a complex phenomenon is produced by a determinis-
tic nonlinear rule, it becomes hard to predict its long-term
behavior, when the dynamics of the complex phenomenon
exhibits chaos. Therefore, it is a fundamental and impor-
tant issue to clarify a source of the complex phenomenon.

On the other hand, during the last decade a complex net-
work theory has drastically advanced and has been widely
acknowledged through several areas, such as biology, so-
ciology, physics and so on. Several properties of complex
phenomena in various real networks have been clarified by
the measures of the complex network theory; for example,
a small-world property discovered by D. Watts and S. Stro-
gatz [5], a scale-free property discovered by A.-L. Barabási
and R.Albert [6]. Several measures have already been pro-

posed to analyze structures and dynamics of the complex
network [7].

Recently, to quantify and analyze deterministic nonlin-
ear dynamics, novel methods have been proposed [4, 10,
11, 12, 13]. These methods analyze nonlinear dynamics
using the complex network theory. In these methods, first,
a network is constructed from an attractor produced from
a nonlinear dynamical system. Next, the constructed net-
work is analyzed by the measures of complex network the-
ory. J. Zhang and M. Small showed interesting analyti-
cal results of observed complex phenomena using the mea-
sures of the complex network theory such as the clustering
coefficient, the characteristic path length, and the degree
distribution[4].

Although an analysis method proposed in this paper
measures the deterministic nonlinear chaotic dynamics us-
ing the measures of the complex network theory [10, 11,
12, 13], an idea in this paper is different from the conven-
tional methods [4]: the idea is based on the fact that at-
tractors of nonlinear dynamical systems and networks are
characterized by a two-dimensional matrix. The matrix is
called a recurrence plot[1, 2, 3] from the dynamical system
theory and an adjacent matrix from the network theory.

To quantify the chaotic dynamics, various indices have
been proposed: the Lyapunov exponent, the Kolmogorov-
Sinai entropy, the fractal dimension and so on. Although
these indices quantify the chaotic dynamics from different
points of view, these indices also have a common feature:
these indices are obtained by the interpoint distances be-
tween two points on an attractor produced from dynami-
cal systems. The interpoint distances can be represented
through a binary two-dimensional image by a recurrence
plot. The recurrence plot can visualise how recurrences
occur on the attractors and can also often be used to inves-
tigate nonstationarity of the dynamical systems.

The recurrence plot is represented as a two-dimensional
square matrix. On the other hand, a network is also de-
scribed by an adjacent matrix which is a two-dimensional
square matrix that reflects connections between nodes in
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the network. Using this relationship of the recurrence plot
and the adjacent matrix, in the previous paper [11, 12, 13],
we applied the measures of the complex network theory,
the clustering coefficient and the characteristic path length,
to the analysis of nonlinear chaotic dynamical systems and
showed that the networks constructed from chaotic attrac-
tors have a small-world property of the complex network
theory. Therefore, in this paper, we propose a new method
to characterize the chaotic dynamics using a new construc-
tion method of a network from an attractor of the nonlinear
dynamical system.

2. Proposed method

2.1. Construct a network from an attractor

To characterize the chaotic behavior using the complex
network theory, we construct a network from an attractor.
Here, the attractor is obtained as an asymptotic set of a dy-
namical system, if we have a specific information of the dy-
namical system. If we only have an observed time series,
the attractor is reconstructed from the time series using a
time delay coordinate [8].

In our construction procedure of a network from an at-
tractor, the network grows using the information of tempo-
ral evolution of the attractor. Therefore, nodes in the net-
work constructed from the attractor correspond to points
on the attractor. The connection between nodes in the con-
structed network is uniquely decided by a distance between
points on the attractor.

Let x(i) (i = 1, . . . ,N) be the ith point on an attractor
and v(i) be the ith node in a network constructed from the
attractor. Then, a distance between x(i) and x( j) is defined
by di j = | x(i) − x( j) |, and a strength of a connection be-
tween v(i) and v( j) is defined by wi j = di j.

The algorithm for constructing a network from an attrac-
tor is described as follows:

1. Start from an initial network that consists of com-
pletely connected M0 nodes (v(1), . . . , v(M0)).
Set the number of nodes in the present network N′ =
M0.

2. Add a new node v(N′ + 1) by connecting it to differ-
ent M (M = M0 − 1) nodes that have existed already
in the network. The M nodes with small wiN′+1 (i =
1, . . .N′) are selected.

3. Increase N′ to N′ + 1.

4. Repeat steps 2 and 3 if N′ < N.

In the above algorithm, we consider that the connections
have no directions and no weights.

2.2. The degree and the degree distribution

To characterize the chaotic behavior, we investigate the
degree of nodes and the degree distribution of the network
constructed from the attractor. The degree of node v(i) is
ki, and p(k) is the distribution of probability that a node in
the network connects to other k nodes.

3. Experiments

We applied our proposed method to three data sets: a
periodic attractor, a chaotic attractor and a reconstructed
attractor from a random time series. We first produced the
periodic attractor and the chaotic attractor from the Rössler
system[14]. The Rössler system is defined by the following
three equations: 

ẋ = −(y + z),
ẏ = x + ay,
ż = b + z(x − c).

(1)

In Eq.(1), we fixed a = b = 0.2, and used the following
values of c: c = 2.5 (a period-1 attractor) and c = 5.0 (a
chaotic attractor).

Next we generated a reconstructed attractor from a time
series. The time series is an interval time series of gamma
ray emission of cobalt (cobalt data) (Fig.1). This time se-
ries has erratic behavior and is considered to be a truly ran-
dom one.
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Figure 1: Time series of gamma ray emission of cobalt.

In this experiments, to construct a network from an at-
tractor, we fixed M = 10. M means the number of connec-
tions of node added to the network.
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4. Results and Discussion

Results of the degree of nodes in the network gener-
ated from the attractors are shown in Fig.2. Fig.2(a) shows
the result of the periodic attractor, Fig.2(b) shows that of
the chaotic attractor, and Fig.2(c) shows that of cobalt
data. From Fig.2, the results show clearly different ten-
dency. From Figs.2(a) and (b), the nodes v(i) with small
indices i have the large number of degree ki. In particular,
in the result of the periodic attractor (Fig.2(a)), this ten-
dency strongly appears. On the other hand, the result of the
chaotic attractor (Fig.2(b)) does not only show the similar
tendency to Fig.2(a) but also some fluctuation. Different
from Fig.2(a) and Fig.2(b), Fig.2(c) shows a wide range of
values of the degree ki.

Results of the degree distribution of the networks con-
structed from the attractors are shown in Fig.3. From Fig.3,
the degree distributions of the chaotic attractor and the
cobalt data show similar tendency, but the periodic attrac-
tor is different. From the results of the degree distribution
(Fig.3), there are no clearly differences between the con-
structed network from the chaotic attractor and the cobalt
data. However, the results of the degree (Fig.2) show the
different tendency between the network of the chaotic at-
tractor and that of the cobalt data. The reason why the
clearly differences between the chaotic attractor and the
cobalt data do not appear in Fig.3 is considered that the
degree distribution is static information of the constructed
network. On the other hand, the results of the degree
(Fig.2) show the information of temporal evolution of the
attractors, and we can confirm the different tendency be-
tween the chaos and the cobalt data.
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Figure 2: Relations between the degree ki and the index i of
the nodes in the network constructed from (a) periodic at-
tractor, (b) chaotic attractor (c) and cobalt data. The degree
ki means the number of connections of the node v(i).
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Figure 3: Results of the degree distributions of the periodic
attractor, the chaotic attractor and the cobalt data.

5. Conclusion

In this paper, we proposed a construction method of a
new network from an attractor to characterize the chaotic
dynamics. In the proposed method, the networks grow us-
ing the information of temporal evolution of the attractors,
and the connections between nodes in the network are de-
cided by the Euclidean distance between nodes on the at-
tractor. Using the proposed method, we first constructed
the networks from three different attractors: the periodic
attractor, the chaotic attractor, and the reconstructed attrac-
tor from cobalt data. We next investigated the degree of the
nodes and the degree distribution of these networks. From
the results with using the information of temporal evolution
of attractor, we confirmed that the different tendencies exist
among the constructed networks from these attractors.

In the proposed method, the connections of nodes in
a constructed network have no direction and no weight.
Therefore, it is an important future work to analyze the
network with directional and weighted connections. In ad-
dition, it is also important to apply the various measures
of the complex network theory to the constructed networks
from the attractors.

The research of TI is partially supported by Grant-in-Aid
for Exploratory Research (No.20650032) from JSPS.
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