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Abstract—This paper studies nonlinear dynamics of a
switched circuit based on ac-dc converters in current mode
control. The switching has hysteresis characteristics that
cause rich phenomena. In order to analyze the dynamics,
we derive a 1D return map of switching phase. The map
has simple shape and we can analyze the chaotic/periodic
phenomena precisely. We also consider stabilization by
adding periodic compulsive switching to the system. It is
confirmed that our method can realize stable operation in
wider parameter range.

1. Introduction

Switching power converters are important not only as ef-
ficient energy supply systems but also as nonlinear dynami-
cal systems having interesting phenomena [1] [2]. The con-
verters include nonlinear switches that can cause a variety
of periodic/chaotic phenomena. Analysis of the phenom-
ena is basic to develop novel bifurcation theory and to de-
sign efficient practical circuits.

This paper studies a switched circuit based on ac-dc con-
verters in current mode control (CMC) [3]-[5]. The CMC
is used for achieving faster transient response in boost con-
verters and for lower voltages with higher current capabil-
ities by current sharing in parallel converters [6]. In order
to control the circuit, we present hysteresis switching that
can cause rich phenomena and consideration. For simplic-
ity, we assume that voltage regulation is achieved in high
frequency modulation, so that the much slower dynamics
of the outer voltage loop can be ignored, and the output
side can be represented by a constant voltage source [6]
[7]. Applying this simplifying assumption, we can derive
1D return map of the switching phase. The map can be de-
scribed exactly based on exact piecewise solution. Using
the map we can investigate rich periodic/chaotic phenom-
ena and related bifurcation phenomena. It should be noted
that the 1D return map is available not only for ac-dc boost
converters but also for a variety of switching circuits in-
cluding delta modulator for PWM control [8].

Next, we consider stabilization of the circuit. Adding
periodic compulsive switching to the circuit, stabilization
is possible for wider parameter range. The results of this
paper is important not only as basic study but also for prac-
tical applications. For example, the results provide basic
information to realize stable operation, distortion removal
[4] and EMI improvement [9].
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Figure 1: The circuit model and simplification

2. The Circuit Model

Fig. 1 shows the objective circuit based on a ac-dc boost
converter with CMC control. The input v1(t) = V1| sin πT t|
is an output of rectifier where T is period of v1(t). The recti-
fier is omitted in the figure. In order to define the switching,
we introduce two reference values which are proportional
to the input: Iref(t) = kv1(t) + I2, I′ref(t) = kv1(t). For sim-
plicity, voltage regulation is assumed to be achieved in high
frequency modulation. It enables us to analyze. Under the
CMC, when the switch is on, the inductor current i rises,
and when it reaches a reference value Iref(t), the switch S
is turned off. When S is off D turns on, and the inductor
current decays. It is turned on by i reaches a reference value
I′ref(t). Thus we have two possible states:

State 1: S conducting, D blocking and 0 < i
State 2: S blocking, D conducting and 0 < i

The switching rules are:
State 1 −→ State 2: when i = Iref(t)
State 2 −→ State 1: when i = I′ref(t)
As stated earlier, we make the simplifying assumption

T << RC and voltage regulation is achieved. In this case,
we can replace the RC with the constant voltage source V2.
Thus the circuit equation becomes

L
d
dt

i =

{
v1(t) for State 1
v1(t) − V2 for State 2

(1)

where 0 < V1(t) < V2.
We introduce the following dimensionless variables and

parameters

x =
i

kV1
, τ =

t
T
, α =

T
Lk
, β =

TV2

LkV1
, γ =

I2

kV1
(2)

through which Eq. (1) is transformed into

d
dτ

x =

{
αs(τ) for State 1
αs(τ) − β for State 2

(3)
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Figure 2: Typical waveforms for α = 10.0 and γ = 0.5. (a)
periodic trajectory for β = 16.0, (b) periodic trajectory with
period 2 for β = 20.5, (c) periodic trajectory with period 3
for β = 24.5, (d) quasi-periodic trajectory for β = 27.0

where s(τ) = | sin πτ|, αs(τ) > 0 and αs(τ) − β < 0.
The switching rules become:

State 1 → State 2 if x = s(τ) + γ
State 2 → State 1 if x = s(τ)

Note that the original six parameters (T , L, k, I2, V1, V2)
are integrated into the dimensionless three parameters α, β
and γ of Eq.(2). Fig. 2 (a) shows typical periodic wave-
form. As the parameter β increases, this periodic trajectory
is changed into periodic trajectory with period 2 and 3 as
shown in Fig. 2 (b) and (c), respectively. The periodic tra-
jectory is changed into quasi-periodic trajectory as shown
Fig. 2 (d).

3. Analysis

We now derive 1D return map of switching phase. Let
τn denote n-th switching moment at which x reaches the
upper threshold s(τ)+ γ and State 1 is changed into State2.
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Figure 3: Return maps for α = 10.0 and γ = 0.5. (a)
periodic orbit for β = 16.0, (b) periodic orbit with period 2
for β = 20.5, (c) periodic orbit with period 3 for β = 24.5,
(d) quasi-periodic orbit for β = 27.0

10 20 30

1

β

nθ

0

Figure 4: Typical bifurcation phenomena for α = 10.0 and
γ = 0.5.

Since τn+1 is determined by τn we can define 1D map of
the form τn+1 = f (τn). Since the system is period 1, we
introduce phase variable θn = τn mod 1 and the map can
be reduced into the return map from I1 ≡ [0, 1) to itself:
θn+1 = F(θn) = f (θn) mod 1.

Fig. 3 (a) shows a return map of periodic orbit corre-
sponding to periodic trajectory in Fig. 2 (a). As β increases,
the periodic orbit with period 1 is changed into periodic or-
bit with period 2 and 3 as shown in Fig. 3 (b) and (c).
They correspond to periodic trajectories in Fig. 2 (c) and
(d), respectively. As β increases further, periodic orbits are
changed into quasi-periodic orbit as shown in Fig. 3 (d)
corresponding to quasi-periodic trajectory in Fig. 2 (d).
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Figure 5: Typical waveforms of stabilization for α = 10.0
and γ = 0.5. (a) periodic trajectory for β = 16.0, (b) pe-
riodic trajectory for β = 20.5, (c) periodic trajectory for
β = 24.5, (d) periodic trajectory for β = 27.0

These phenomena are summarized in the bifurcation dia-
gram in Fig. 4. Such complex behavior relate deeply to
undesired operation such as current distortion. Note that
the map does not have discontinuous points. The map of
this paper is simpler than that of [7] having many disconti-
nuity points.

4. Stabilization

In order to stabilize the unstable behavior, we consider
the stabilization in this switching rule:

State 1 → State 2 if x = s(τ) + γ or τ = n
State 2 → State 1 if x = s(τ)

That is, the compulsory and periodic switching to State
2 is applied at every period end. We refer to this rule as rule
S.

Fig. 7 shows return maps switching rule S. Fig. 7 (a) to
(d) correspond to Fig. 3 (a) to (d). All the maps has a part
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Figure 6: Stabilization method

1+nθ

( )a ( )b

( )c ( )d

1

0 1 nθ

1+nθ
1

0 1
nθ

1+nθ
1

0 1
nθ

1+nθ
1

0 1
nθ

Figure 7: Return maps of stabilization for α = 10.0 and
γ = 0.5. (a) periodic orbit for β = 16.0, (b) periodic orbit
for β = 20.5, (c) periodic orbit for β = 24.5, (d) periodic
orbit for β = 27.0

with small slope and exhibit stable periodic orbits. These
phenomena are summarized in the bifurcation diagram in
Fig. 8 where we can confirm stable periodic behavior only:
stabilization is achieved in wide parameters range.

5. Conclusions

This paper studies nonlinear dynamics of a switched cir-
cuit based on ac-dc converters in CMC. The hysteresis
switching rule is used in the circuit. In order to analyze
the rich phenomena, we derive the 1D return map that de-
scribes switching phase of the circuit. An effective stabi-
lization method with compulsory periodic switching is also
presented.

Future problems are many, including the following: de-
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Figure 8: Typical bifurcation phenomena of stabilization
for α = 10.0 and γ = 0.5.

tailed analysis of bifurcation phenomena, generalization of
1D return map of switching phase and experiments of prac-
tical circuits.
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