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Abstract— The brain is a parallel distributed system,
where its information representations are thought to be dy-
namically formed by experience. The problem here is how
those representations, or neural codes, are coherently inte-
grated throughout the brain. In this article, we address this
problem based on the hypothesis that Bayesian computa-
tion is taken place in the brain. We formulate biologically
plausible forms of information representations, computa-
tion, and learning for the integration of neural codes over
distant cortical areas. We then provide a simulation result
to demonstrate the effectiveness of our theory.

1. Introduction

1.1. A problem of code integration in the brain

The brain seems to carry out computation in a paral-
lel fashion[1]. For coherent computation, information en-
coded in a local cortical circuit should be accessible for the
other circuits to proceed their task; this can be done through
interareal communication within the brain. We address the
problem of how these cortical circuits can know the foreign
encoding format of information to decode the received sig-
nals.

This problem seems relative easy if the neural represen-
tation of information, or neural code, is fixed. However,
it is considered that the neural code is dynamically formed,
influenced by experience as well as static innate effects that
are genetically programmed[2]. Therefore it is implausible
that the way to decode the foreign codes is hard-coded. Al-
ternative possibility is that the neural codes are integrated
dynamically throughout the cortical circuits; the circuits
learn how to decode signals only with locally available in-
formation.

In this article we aim at deriving a reasonable learning
algorithm to realize this code integration. Historically, this
problem has been regarded as a variant of the famous bind-
ing problem and attracted much attention in the field of
neuroscience[3]. We deal with this problem by providing a
computational model, based on the idea that Bayesian com-
putation is employed in the brain.

1.2. Bayesian computation in the brain

It is recently demonstrated that Bayesian computation
might be performed in the brain, by some psychological
experiments[4, 5]. Although this possibility is currently
only suggested in primitive cognition, this idea is consid-
ered to provide an unique computational framework in the
brain in the long run. In this study we hypothesize that
Bayesian computation is carried out in the brain, so that we
can maintain the universality of the theory.

2. A computation model and algorithms

2.1. Bayesian computation

Here we formulate the computation that we consider in
this article. Although many types of computation can be
considered, we focus on a problem called multimodal inte-
gration in the field of neuroscience. In multimodal integra-
tion, the neural system estimates the states of the environ-
ment by integrating more than two cues which are gained
through the different sensory systems. This problem is of-
ten used in the theoretical studies on the Bayesian compu-
tation in the brain and captures the essence of the idea[6].

It is straightforward to formulate the problem of multi-
modal integration in the line of the Bayesian computation;
we suppose that probabilistic density functions on the en-
vironment are somehow represented in the brain and es-
timation is made by manipulating them [5, 6]. For sim-
plicity, we here only deal with the case where the hidden
environmental state, denoted by h, is a scalar. Moreover,
we also assume that the number of the sensory systems
is two, and the information on the real value of h, h∗ is
obtained through observations made by these sensory sys-
tems. Those observations are denoted by o0 and o1, and
the information on h∗ that they contain is represented by
posterior distributions as p(h = h∗|o0) and p(h = h∗|o1).
Here we make another assumption that those observations
are statistically independent with given h∗.

In the Bayesian framework, the information in those two
observations, o0 and o1 is integrated coherently by con-
structing a new posterior distribution based both on o0 and
o1. Under above conditions, this integrated posterior can
be obtained by simply multiplying the two posteriors asso-
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ciated with o0 and o1,

p(h|o0, o1) ∝ p(h|o0) p(h|o1), (1)

where a flat prior is assumed and h = h∗ is abbreviated to
h[5, 6]. The outline of this computation is illustrated in
Fig. 1. The final decision on h is made with the integrated
posterior through a proper estimation scheme, for example,
maximum posterior (MAP) estimation [7].

h h

p(h|o1)

p(h|o0, o1)
p(h|o0)

Integrate

Figure 1: Formulation of multimodal integration in the
Bayesian framework: two posterior distributions are first
computed based on the observations (the orange and blue
curves in the left), and then they are multiplied to yield an
integrated posterior (the red curve in the right).

2.2. On the neural codes

We next consider how this Bayesian computation can be
achieved in the neural systems. Particularly in this section,
it is discussed what limitations are present in the neural
systems and how they can affect possible realization of the
neural codes.

If we hypothesize that Bayesian computation is taken
place in the brain, the information in the circuits is rep-
resented in the form of posterior density functions. In that
case, what limitations are there in expressing posterior dis-
tributions in the neural system? It is at least asserted that
the neural systems are incapable of directly expressing con-
tinuous functions like posterior distributions, since this re-
quires infinite computational capacity. Therefore, instead
of functions, it seems reasonable to consider that the sys-
tem manages vectors which approximate the original dis-
tribution. This approximation would naturally be done by
quantizing the corresponding distribution function to yield
vector components,

p(h∗ ∈ Hi) =
∫

Hi

p(h) dh, (2)

where Hi is a quantization interval and i is its index.
As for the neural representation of this vector, we here

hypothesize that the population code is used; each neuron
in the circuit corresponds to a quantization interval and the
value of the component associated with this interval is rep-
resented by the firing rate of the neuron as

p(h∗ ∈ Hi) ∝ qi, (3)

where the firing rate of ith neuron is denoted by qi. This is
illustrated in Fig. 2.
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Figure 2: Neural representation of a density function: the
neurons are numbered in the same manner as the corre-
sponding interval and their firing rate represents the com-
ponents of the quantized density function.

2.3. Discrete forms of computation

When considering Bayesian computation in the brain,
we assume that the computation of Eq. (1) is somehow
implemented in the neural system. Particularly, because
we model the neural system as a distributed system, the
computation of Eq. (1) is independently realized over the
distant cortical circuits. Since we are concerning the case
where only two sensory systems are involved, we here con-
sider two cortical circuits, denoted by S0 and S1, each of
them is responsible for each sensory system. Accordingly,
one of the two posteriors in the r.h.s. of Eq. (1) is directly
available in a local circuit, and the other is retrieved via
communication; we call them local and distant posteriors,
respectively.

As we discussed in the previous section, posterior distri-
butions must be represented in a discrete form, so must be
the expression of the computation, Eq. (1). If the quantiza-
tion intervals and the neural mapping in the cortical circuits
are the same, it is straightforward to derive a discrete form.
With an assumption that quantization does not violate the
independence condition, Eq. (1) can be expressed as

p(Hi|o0, o1) ∝ p(Hi|o0) p(Hi|o1), (4)

where h∗ ∈ Hi is abbreviated to Hi. However, this is mere
a special case. Generally speaking, the intervals and the
mapping do not coincide between distant cortical circuits;
the foreign code of the distant circuit must be interpreted
before integration. Fortunately, this interpretation seems to
be realized with a relative simple form as we derive

p
(
H0

k |o0, o1

)
∝ p

(
H0

k |o0

) ∑
l′

p
(
H0

k |H1
l′
)

p
(
H1

l′ |o1

) ,
(5)

where H0
k and H1

l are the quantization interval of S0 and
S1, k and l are their neural index, and it is assumed that
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events h∗ ∈ H0
k and o1 is statistically independent under

a condition of h∗ ∈ H0
k . Although Eq. (5) is only for S0,

the expression for S1 is the same except for the indices.
We only show the results on S0 in the rest of this article,
without loosing generality.

Next, let us consider what neural architecture can imple-
ment the computation of Eq. (5). First of all, it is necessary
for the local circuits to have a set of neurons which encodes
the local posterior, p(h|o0) or p(h|o1). We here denote its
population activity by q̂0

k(o0) and q̂1
l (o1). In addition to that,

another set of neurons is needed in order for the integrated
posterior, p(h|o0, o1) to be expressed in the neural system;
we denote its activity by q0

k(o0, o1) and q1
l (o0, o1). We as-

sume that the same neural code is used in those two neural
populations. Equation (5) suggests that q0

k(o0, o1) success-
fully approximates the integrated posterior if it is computed
as

q0
k(o0, o1) ∝ q̂0

k(o0)
∑

l′
A01

k,l′ q̂
1
l′(o1) (6)

in the neural circuit, where we assume A01
k,l is given as a

close approximation of p
(
H0

k |H1
l

)
. The main problem here

is how A01
k,l and A10

l,k can be generated in the local circuit.
If they can be learned independently in the cortical circuits
based only on locally available information, we can provide
a possible answer to the problem of code integration in the
brain.

2.4. A learning algorithm for code integration

We here formulate a learning algorithm for A01
k,l and A10

l,k.
As shown in the previous section, the ideal values of A01

k,l

and A10
l,k are the conditional distributions, p

(
H0

k |H1
l

)
and

p
(
H1

l |H0
k

)
. Since both of them can be obtained from the

joint distribution, p
(
H0

k , H1
l

)
, we first examine the possi-

bility of learning this joint distribution.
By expressing the joint distribution as a marginal distri-

bution of p
(
H0

k , H1
l , o0, o1

)
, we obtain

p
(
H0

k , H1
l

)
=

"
p
(
H0

k |o
)

p
(
H1

l |o
)

p(o) do0 do1, (7)

where we assume that events, h∗ ∈ H0
k and h∗ ∈ H1

l become
statistically independent with a given pair of o0 and o1, and
use a vector notation of o0 and o1, o. Notice that the r.h.s. of
Eq. (7) can be seen as an ensemble mean of the product
between p

(
H0

k |o
)

and p
(
H1

l |o
)
, over any possible o. When

the time course of o is given to obey p(o), this mean can be
equivalently expressed as a temporal mean,

p
(
H0

k , H1
l

)
= lim

T→∞

1
T

∫ T

0
p
(
H0

k |o(τ)
)

p
(
H1

l |o(τ)
)

dτ,

(8)

where the time course is denoted by o(t).

In Eq. (8), p
(
H0

k |o
)

and p
(
H1

l |o
)

are the expressions of
integrated posterior in the neural code of S0 and S1. There-
fore, by substituting them by their neural representation,
q0

k(o) and q1
l (o), we may be able to derive an expression for

learning on the joint distribution. Based on this idea, we
define a neural expression for the joint distribution, Ãk,l(t)
as

Ãk,l(t) =
∫ t

0
q0

k(o(τ)) q1
l (o(τ)) exp

(
− t − τ
τL

)
dτ, (9)

where we made the substitution and introduced a learning
time constant, τL, for the system to be able to accommodate
a change in p(o). Since Ãk,l(t) may approximate the joint
distribution, we can obtain A01

k,l and A10
l,k from it just as we

get conditional distributions from a joint one.
To run this algorithm, all needed for the local circuits

is the activities of the distant neurons that encode the in-
tegrated posterior, p(h|o); this is thought to be available
through interareal communication. Figure 3 illustrates our
neural model for the learning algorithm.

h

q̂
0(o0) q̂

1(o1)

q
1(o0, o1)q

0(o0, o1)

S
0

S
1

H
0

0 H
0

1 H
0

2
H

1

2
H

1

1
H

1

0

Figure 3: The model architecture. Two models of cortical
circuit, S0 and S1 have two layers of neurons, the upper
one for the integrated posterior and the lower one for the
local posterior. These two layers are mapped onto a set of
intervals in h, {H0

k } for S0 and {H1
l } for S1. The neural con-

nections from S0 is displayed in black and those from S1 is
in gray. For computation, the upper layer receives parallel
connections from the local lower layer and cross connec-
tions from all of the neurons in the distant lower layer. For
leaning, neurons in one of the upper layers receive connec-
tions from all of the neurons in the other upper layer.

When we see this learning algorithm as a dynamical sys-
tem driven by a stochastic variable, o(t), it seems that the
line, Ãk,l ∝ p

(
H0

k , H1
l

)
becomes a set of fixed points of

this dynamics. The reason for this is as follows. First, if
Ãk,l ∝ p

(
H0

k , H1
l

)
holds, then the cortical circuits can suc-

cessfully compute q0
k(o) and q1

l (o) through Eq. (6). Second,
it is asserted that q0

k(o) and q1
l (o) now closely approximate

p
(
H0

k |o
)

and p
(
H1

l |o
)
, Eq. (8) therefore suggests that Ãk,l

will not deviate from the original line as far as its devel-
opment conforms to Eq. (9). The problem left here is its
stability and basin structure. If this line is shown to be a
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stable attractor, then it is possible to learn proper values of
Ãk,l, from a certain initial values.

3. Numerical verification

To verify whether the learning algorithm proposed in 2.4
functions properly or not, we here show some results of a
numerical simulation. In this simulation, we randomly gen-
erate h∗ from an uniform distribution on an interval, [0, 1],
and then generate local posteriors, p(h|o0) and p(h|o1) to
run the learning algorithm. These distributions are given
as a gaussian distribution; we use their variance as one of
the principal parameters in this experiment. It is also im-
portant how the quantization intervals are defined; in this
experiment, they are independently made in the cortical cir-
cuits, with a fixed interval width. These widths are another
parameter of this experiment.
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Figure 4: The performance of the system. The vertical axis
shows the deviation of the estimation in S0 from the real
value, h∗, and the horizontal axis shows the variance of the
local posterior. Estimation is made by MAP estimation.
The widths of quantization intervals in S0 and S1 are 0.02
and 0.005, respectively. The variance of the distant pos-
terior, p(h|o1) is 0.003. The each curve in the graph rep-
resents the case without integration (shown in red +), the
case where ideal values of Ãk,l is used (orange ×), the case
where Ãk,l is learned (purple ∗), the case where integration
is made by p(h|o0, o1) (blue �), and the case where inte-
gration is made by p

(
H0

k |o0, o1

)
(green �).

Figure 4 shows the performance of S0 on the estimation
of h∗ with respect to the variance of p(h|o0). The shadowed
region in the graph indicates the range of the variance in
which the width of the peak in p(h|o0) almost matches the
quantization width. This range seems to be a biologically
plausible one. Out of this range, the activities of different
neurons get strongly correlated or information provided by
the sensory systems gets largely discarded; both of these
effects are thought to be unfavorable in the sense of com-
putational efficiency. Around this range, it is clearly seen

that the performance achieved through learning closely ap-
proaches its ideal value. This shows that the learning algo-
rithm is effective in that range.

4. Conclusion

In this article, we addressed a problem of code integra-
tion in the brain. By assuming that Bayesian computa-
tion is carried out in the brain, we formulated a possible
form of computation and a learning algorithm to resolve
the code difference between the cortical circuits. We then
made a numerical experiment to show the effectiveness of
the learning algorithm. The numerical result indicates that
the learning algorithm can configure the interpreting rule
for a foreign neural code under biologically relevant con-
ditions. Those results show that it is possible for the local
cortical circuits to learn how they should process signals
from other cortical circuits in a dynamical and distributed
fashion for coherent computation to proceed in the brain.

This research is partially supported by Grant-in-Aid for
Scientific Research (A) (20246026) from MEXT of Japan.
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