

GPU Implementation of
Asynchronous Discrete-Time Cellular Neural Networks

Kenichiro Tanaka and Yuichi Tanji†

Department of Electronics and Information Engineering,
Kagawa University

2217-20 Hayashi-cho, Takamatsu 761-0396, Japan
Email: †tanji@eng.kagawa-u.ac.jp

Abstract– GPU implementation of asynchronous type

of discrete-time cellular neural networks for image
processing is presented. To accelerate the operation, the
parallel computation scheme for updating the cells of
networks is provided. Furthermore, the techniques that
utilize shared memory of GPU are presented in order to
speed up further. In illustrative examples, we compare the
performance of GPU implementation with CPU and
confirm its efficiency.

1. Introduction

Discrete-time cellular neural networks (DT-CNNs) [1],
[3]-[6] are a digital version of cellular neural networks
(CNNs) [2], where the output of DT-CNNs is obtained by
step or quantization function, and the dynamics is
represented by a set of difference equations which are
obtained via forward Euler method for solving the state
equations of CNNs with a unit time step. CNNs are
constructed by large scale of analog VLSI. Although DT-
CNNs do not exceed CNNs functionally, DT-CNNs can be
constructed via hardware description language [3], [6].
This means that DC-CNNs are more reliable than CNNs.
The relation between morphology and DT-CNNs was
suggested [4], thus, the universal machine with DT-CNN
processor can be used for actual applications such as
cancer detection.

In [8], it was suggested that there are two types of DT-
CNNs depending on the update rules. The cells are
synchronously updated for the synchronous DT-CNNs. On
the other hand, for the asynchronous DT-CNNs, the cells
are asynchronously updated. The difference of update is
explained by the nonlinear relaxation methods which are
numerical methods for solving a set of nonlinear equations
[8]. The synchronous DT-CNNs are corresponding to one
step Gauss Jacobi Newton (GJN) method for solution of
equilibrium points for the state equations of CNNs, and
the asynchronous DT-CNNs are to one step Gauss Seidel
Newton (GSN) method. It is known that the GSN method
is more robust than the GJN method. Therefore,
applicability of asynchronous DT-CNNs is wider than
synchronous DT-CNNs.

In this paper, the GPU implementation of asynchronous
DT-CNNs is presented. GPU was a graphic processor to
display images on monitor in real time. Recently, it is used

for general purpose of computations with features of many
core processors. The structures are similar to the DT-CNN
processors [3], [6] which have many processing units for
updating the cells. Hence, we implement the
asynchronous DT-CNNs on GPU. First, the parallel
updating scheme of cells is presented in order to
accelerate the operation. Next, we consider using the
shared memory which is an internal memory of GPU.

In the examples, it is demonstrated that the GPU
implementation is much faster than CPU.

2. DT-CNN

2.1. Synchronous and Asynchronous DT-CNNs

DT-CNN is a sparse connected neural network composed
of 2-D array of M × N cells. For a cell C(i,j) (i = 1,…,
M, j = 1,…, N) and the neighborhood Nr(i,j), the dynamic
of DT-CNN is written by

,),;,(

)(),;,()1(

),(),(

),(),(

ijjiNlkC kl

jiNlkC klij

TulkjiB

nylkjiAnx

r

r










 (1)

where xij(n) is the internal state of the cell C(i,j), uij	[‐ξ,	
ξ]	 is the input, yij is the output, and Tij is the threshold
value. A(i,j;k,l) and B(i,j;k,l) are the connection weights
between C(i,j) and C(k,l) which are related to the outputs
and inputs, respectively, and these are called A and B
templates.

The output function f(xij(n)) is defined as















))((1

))(())((

))((1

))((






nx

nxnxg

nx

nxf

ij

ijij

ij

ij , (2)

where g(xij) is m-level uniform quantization function.

DT-CNNs are classified into synchronous and
asynchronous types. For the synchronous DT-CNNs,
each cell is synchronously updated following (1) and (2).
On the other hand, update of cells is asynchronously
carried out for asynchronous DT-CNNs. Hence, results of

2015 International Symposium on Nonlinear Theory and its Applications
NOLTA2015, Kowloon, Hong Kong, China, December 1-4, 2015

- 81 -

synchronous CNNs are not always identical to ones of
asynchronous DT-CNNs. For example, we can obtain the
conversion images shown in Fig. 1 using the halftoning
templates [5]. The halftone image can be obtained by the
asynchronous DT-CNN. However, the result obtained by
the synchronous DT-CNN is not adequate, because the
conversion image is not in good quality as halftone image.
For DT-CNNs or CNNs, the networks are designed so that
they reach the equilibrium points, and the output of each
cell gives the conversion image. The reason why the result
obtained by the synchronous DT-CNN does not provide a
good halftone image is that the network does not converge
to the equilibrium points. In the next subsection, we
clarify the difference between synchronous and
asynchronous DT-CNNs in convergence.

Figure 1: Halftone image obtained by DT-CNN. (a)
Original Image. (b) Conversion Image by the
asynchronous DT-CNN. (c) Conversion Image by the
synchronous DT-CNN.

2.2. Nonlinear Relaxation Method

DT-CNNs are originated from CNNs. The dynamics of
CNN is written by

ijjiNlkC kl

jiNlkC klij
ij

TulkjiB

nylkjiAx
dt

dx

r

r












),(),(

),(),(

),;,(

)(),;,(
 .

(3)

Hence, DT-CNNs are understood as being an
approximation by the forward Euler method to (3).
However, we cannot explain the difference between
synchronous and asynchronous types. The reference [8]

shows that DT-CNNs are best understood to be one step
nonlinear relaxation methods for finding the equilibrium
points of (3). Then, the one step GJN iteration is written
by

,),;,(

)(),;,(

),(),(

),(),(

1

ijjiNlkC kl

jiNlkC

m
kl

m
ij

TulkjiB

xflkjiAx

r

r













 (4)

whereas the one step GSN iteration is written by

,),;,(

))((),;,(

),(),(

),(),(

1

ijjiNlkC kl

jiNlkC kl
m
kl

m
ij

TulkjiB

yxPflkjiAx

r

r













 (5)

where








otherwise

updatedis
)(

11

m
kl

m
kl

m
klm

kl
x

xifx
xP . (6)

In (4), the updated internal state xij depends on the past
value, thus (4) is identical to (1), which implies that the
GJN method is identical to the synchronous DT-CNNs.
On the other hand, the internal state xij is asynchronously
updated as (6). Hence, (5) is an asynchronous DT-CNN.
We can adopt various update rules for the asynchronous
DT-CNNs. In our GPU implementation, the cells are
updated in parallel to accelerate the operations.

3. GPU Implementation

The structure of GPU is shown in Fig. 2(a). The multi
processors MP in GPU include some streaming processors
SP. These processors are managed by the concept of
thread, block, and grid. Block consists of many threads
which are executed in parallel. Grid is composed of all
blocks. Programming for GPU is made via CUDA which
is an integrated development environment provided by
NVIDA. Programmers need not to be conscious of
multiprocessors and only have to handle the threads.
 Figure 3 shows the concept of update of cells. The cells
painted with yellow are dummy sells which have only
output with zero. The dummy cells are used to update the
cells placed at edge of image. We assume that the size of
A and B templates is 3×3. Then, the original image is
divided into 3×3 subimage. In Fig. 3, the cells with the
same color do not have dependency each other, there
happens no collision in global memory when they are
updated. Namely, the update as Fig. 3 gives an
asynchronous DT-CNN. Then, the whole image is
processed by nine blocks, which implies that the internal
states ad outputs are read and written nine times from
and/or to global memory.

(a)

(c)

(b)

- 82 -

Figure 2: Structure of GPU and CUDA. (a) Relation
between CPU and GPU. (b) Memory structure of GPU in
CUDA.

 To accelerate the operation, we should minimize
reading from global memory. Since shared memory is
faster than global memory, we make use of shared
memory. As shown in Fig. 4, we take the every third cell
and make a block. Then, the nx/3 cells corresponding to a
block are simultaneously updated. In this case, the internal
states and outputs in the first three lines are read from
global memory into shared memory. We can take
advantage of the contents of shared memory during three
updates in horizontal direction, which means that the
internal state and output are read and written three times
from global image to process the whole image.

Figure 3: GPU implementation of the asynchronous DT-
CNN, where 3× 3 templates are assumed. The same
colored cells are updated in parallel.

Figure 4: Use of shared memory for updating the cells
placed in horizontal (x) direction.

 Shared memory is also used to update the cells placed
in horizontal and perpendicular directions. In this case, we
need to separate the update into the two steps as shown
Figs. 5(a) and 5(b). The updated first two lows do not
have dependency as shown in Fig. 5(a). However, since
the cells in the last low are updated in another block, we
need to reread the last low. Hence, the 4×(nx+2) internal
states and outputs shown in Fig. 5(a) are read from global
memory into shared memory in the first step, and the 3×
(nx+2) as shown in Fig. 5(b) are read in the second one.
Therefore, the internal states and outputs are read and
written twice from global memory, which accelerates the
update of cells.

Figure 5: Shared memory is used for updating the cells
placed in horizontal (x) and perpendicular (y) directions.
(a) First step. (b) Second step.

(a)

(b)

C P U

Thread excursion manager
G P U

SP1 SP2

SP3 SP4

SP5 SP6

SP7 SP8

MP 1

・・・

SP1 SP2

SP3 SP4

SP5 SP6

SP7 SP8

MP N

(a)

global m
em
ory

C

P

U

G

P

U

・E・E・E

Block 1

shared memory

thread thread・・・

Block N

shared memory

thread thread・・・

(b)

- 83 -

4. Results

The image halftoneng templates [5] were used to evaluate
the GPU implementation. We used GeForce GTX 560 Ti
with 1.0GB global memory, 65.5KB shared memory, and
1.67GHz clock speed. For a comparison, the results were
compared with one obtained by Intel® Core™ i5 with
4096 MB memory.
 Figure 6 shows the conversion image obtained by the
GPU, where an appropriate halftone image is obtained.
The image is almost identical to Fig. 1(b) given by the
GSN method [8]. From this fact, we see that the parallel
computation scheme provided in Sect. 3 is valid.

Tables 1 and 2 shows the comparison of CPU times
between GPU and CPU implementations for different size
of images. In these tables, direction x implies that shared
memory is used to update the cells placed in horizontal (x)
direction as shown in Fig. 4, and directions x and y are
corresponding to Fig. 5. The speed up ratio without shared
memory is not high. Fortunately, the ratio becomes high
taking advantage of shared memory for update of more
cells. As a result, we can accelerate the operation until 20
times faster than CPU.

Figure 7: Halftone image obtained by the
asynchronous DT-CNN implemented on GPU.

Table 1: Performance of GPU implementation for 256×
256 pixels image.

direction block size GPU [sec.] speed up
 1 0.480 1.875
x 1 0.149 6.048
x 2 0.146 6.252

x and y 1 0.109 8.294
x and y 2 0.105 8.650

Table 2: Performance of GPU implementation for 512×
512 pixels image.

direction block size GPU [sec.] speed up
 1 0.614 5.64
x 1 0.239 14.50
y 2 0.249 13.90

x, y 1 0.181 19.08
x, y 2 ― ―

5. Conclusions

We have presented the GPU implementation of
asynchronous DT-CNNs. To accelerate the operations, the
parallel computation scheme and utilizing the shared
memory are provided. Using the halftoning templates, we
confirm that the proposed implementation certainly speeds
up the operations.

References

[1]. H. Harrer and J. A. Nossek, “Discrete-time cellular
neural networks,” Int. J. Circuit Theory and
Applications, vol. 20, pp. 453-467, 1994.

[2]. T. Roska, Á. Zarándy, S. Zöld, P. Földesy, and P.
Szolgay, “The computational infrastructure of
analogic CNN computing-Part I: the CNN-UM chip
prototyping system,” IEEE Trans. Circuits Syst.-I},
vol. 46, no. 1, 1999.

[3]. T. Ikenaga and T. Ogura, “A DTCNN universal
machine based on highly parallel 2-d cellular
automata CAM2, IEEE Trans. Circuit Syst.- Part I,
vol. 45, No. 5, pp. 538-546, 1998.

[4]. M. H. ter Brugge, J. A. G. Nijhuis, L. Spaanenburg,
“Transformational DT-CNN design from
morphological specifications,” IEEE Trans. Circuits
Syst., vol. 45, no. 9, pp. 879-888, Sept. 1998.

[5]. M. Ikegami and M. Tanaka, “Image coding and
decoding by discrete time cellular neural networks,”
Trans. IEICE-A, vol. J77-A, pp. 954-964, 1994 (in
Japanese).

[6]. D. Uchimoto ， H. Numata ， Y. Tanji ， and M.
Tanaka， ”Design of discrete-time cellular neural
networks image processor,” Trans. IEICE-DII, vol.
J84-D-II, no. 7, pp. 1464-1474, July 2001 (in
Japanese).

[7]. J. M. Orgega and W. C. Rheinboldt, Iterative
Solution of Nonlinear Equations in Several
Variables, New York: Academic, 1970.

[8]. Y. Tanji, “On a synchronous/asynchronous model of
discrete time cellular neural network,” Trans. IEICE,
vol. J85-A, no. 6, pp. 725-729, 2002.

- 84 -

	Navigation Page
	Session at a glance

