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Abstract– GPU implementation of asynchronous type 

of discrete-time cellular neural networks for image 
processing is presented. To accelerate the operation, the 
parallel computation scheme for updating the cells of 
networks is provided. Furthermore, the techniques that 
utilize shared memory of GPU are presented in order to 
speed up further. In illustrative examples, we compare the 
performance of GPU implementation with CPU and 
confirm its efficiency. 
 
 
1. Introduction 
 
Discrete-time cellular neural networks (DT-CNNs) [1], 
[3]-[6] are a digital version of cellular neural networks 
(CNNs) [2], where the output of DT-CNNs is obtained by 
step or quantization function, and the dynamics is 
represented by a set of difference equations  which are 
obtained via forward Euler method for solving the state 
equations of CNNs with a unit time step. CNNs are 
constructed by large scale of analog VLSI. Although DT-
CNNs do not exceed CNNs functionally, DT-CNNs can be 
constructed via hardware description language [3], [6]. 
This means that DC-CNNs are more reliable than CNNs. 
The relation between morphology and DT-CNNs was 
suggested [4], thus, the universal machine with DT-CNN 
processor can be used for actual applications such as 
cancer detection. 

In [8], it was suggested that there are two types of DT-
CNNs depending on the update rules. The cells are 
synchronously updated for the synchronous DT-CNNs. On 
the other hand, for the asynchronous DT-CNNs, the cells 
are asynchronously updated. The difference of update is 
explained by the nonlinear relaxation methods which are 
numerical methods for solving a set of nonlinear equations 
[8]. The synchronous DT-CNNs are corresponding to one 
step Gauss Jacobi Newton (GJN) method for solution of 
equilibrium points for the state equations of CNNs, and 
the asynchronous DT-CNNs are to one step Gauss Seidel 
Newton (GSN) method. It is known that the GSN method 
is more robust than the GJN method. Therefore, 
applicability of asynchronous DT-CNNs is wider than 
synchronous DT-CNNs. 

In this paper, the GPU implementation of asynchronous 
DT-CNNs is presented. GPU was a graphic processor to 
display images on monitor in real time. Recently, it is used 

for general purpose of computations with features of many 
core processors. The structures are similar to the DT-CNN 
processors [3], [6] which have many processing units for 
updating the cells. Hence, we implement the 
asynchronous DT-CNNs on GPU. First, the parallel 
updating scheme of cells is presented in order to 
accelerate the operation. Next, we consider using the 
shared memory which is an internal memory of GPU.  

In the examples, it is demonstrated that the GPU 
implementation is much faster than CPU. 
 
 
2. DT-CNN 
 
2.1. Synchronous and Asynchronous DT-CNNs 
 
DT-CNN is a sparse connected neural network composed 
of 2-D array of M × N cells. For a cell C(i,j) (i = 1,…, 
M,  j = 1,…, N) and the neighborhood Nr(i,j), the dynamic 
of DT-CNN is written by 
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where xij(n) is the internal state of the cell C(i,j), uij	[‐ξ,	
ξ]	 is the input, yij is the output, and Tij is the threshold 
value. A(i,j;k,l) and B(i,j;k,l) are the connection weights 
between C(i,j) and C(k,l) which are related to the outputs 
and inputs, respectively, and these are called A and B 
templates. 

The output function f(xij(n)) is defined as 
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where g(xij) is  m-level uniform quantization function. 

DT-CNNs are classified into synchronous and 
asynchronous types. For  the synchronous DT-CNNs, 
each cell is synchronously updated following (1) and (2). 
On the other hand, update of cells is asynchronously 
carried out for asynchronous DT-CNNs. Hence, results of 
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synchronous CNNs are not always identical to ones of 
asynchronous DT-CNNs. For example, we can obtain the 
conversion images shown in Fig. 1 using the halftoning 
templates [5]. The halftone image can be obtained by the 
asynchronous DT-CNN. However, the result obtained by 
the synchronous DT-CNN is not adequate, because the 
conversion image is not in good quality as halftone image. 
For DT-CNNs or CNNs, the networks are designed so that 
they reach the equilibrium points, and the output of each 
cell gives the conversion image. The reason why the result 
obtained by the synchronous DT-CNN does not provide a 
good halftone image is that the network does not converge 
to the equilibrium points. In the next subsection, we 
clarify the difference between synchronous and 
asynchronous DT-CNNs in convergence.  
 

 
 
 
 
 
 
 
 
 
 
 
Figure 1: Halftone image obtained by DT-CNN. (a) 
Original Image. (b) Conversion Image by the 
asynchronous DT-CNN. (c) Conversion Image by the 
synchronous DT-CNN. 
 
2.2. Nonlinear Relaxation Method 
 
DT-CNNs are originated from CNNs. The dynamics of 
CNN is written by  
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Hence, DT-CNNs are understood as being an 
approximation by the forward Euler method to (3). 
However, we cannot explain the difference between 
synchronous and asynchronous types. The reference [8] 

shows that DT-CNNs are best understood to be one step 
nonlinear relaxation methods for finding the equilibrium 
points of (3). Then, the one step GJN iteration is written 
by 
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whereas the one step GSN iteration is written by  
 

,),;,(

))((),;,(

),(),(

),(),(

1

ijjiNlkC kl

jiNlkC kl
m
kl

m
ij

TulkjiB

yxPflkjiAx

r

r













  (5)                        

 
where 
 








otherwise

updatedis
)(

11

m
kl

m
kl

m
klm

kl
x

xifx
xP .                 (6) 

 
In (4), the updated internal state xij depends on the past 
value, thus (4) is identical to (1), which implies that the 
GJN method is identical to the synchronous DT-CNNs. 
On the other hand, the internal state xij is asynchronously 
updated as (6). Hence, (5) is an asynchronous DT-CNN. 
We can adopt various update rules for the asynchronous 
DT-CNNs. In our GPU implementation, the cells are 
updated in parallel to accelerate the operations. 
 
 
3. GPU Implementation 
 
The structure of GPU is shown in Fig. 2(a).  The multi 
processors MP in GPU include some streaming processors 
SP.  These processors are managed by the concept of 
thread, block, and grid. Block consists of many threads 
which are executed in parallel. Grid is composed of all 
blocks. Programming for GPU is made via CUDA which 
is an integrated development environment provided by 
NVIDA. Programmers need not to be conscious of 
multiprocessors and only have to handle the threads. 
 Figure 3 shows the concept of update of cells. The cells 
painted with yellow are dummy sells which have only 
output with zero. The dummy cells are used to update the 
cells placed at edge of image. We assume that the size of 
A and B templates is 3×3. Then, the original image is 
divided into 3×3 subimage. In Fig. 3, the cells with the 
same color do not have dependency each other, there 
happens no collision in global memory when they are 
updated. Namely, the update as Fig. 3 gives an  
asynchronous DT-CNN. Then, the whole image is 
processed by nine blocks, which implies that the internal 
states ad outputs are read and written nine times from 
and/or to global memory. 

 
(a) 

 
(c) 

(b) 
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Figure 2: Structure of GPU and CUDA. (a) Relation 
between CPU and GPU. (b) Memory structure of GPU in 
CUDA. 
  
 To accelerate the operation, we should minimize 
reading from global memory. Since shared memory is 
faster than global memory, we make use of shared 
memory. As shown in Fig. 4, we take the every third cell 
and make a block. Then, the nx/3 cells corresponding to a 
block are simultaneously updated. In this case, the internal 
states and outputs in the first three lines are read from 
global memory into shared memory. We can take 
advantage of the contents of shared memory during three 
updates in horizontal direction, which means that the 
internal state and output are read and written three times 
from global image to process the whole image. 
 

 
Figure 3: GPU implementation of the asynchronous DT-
CNN, where 3× 3 templates are assumed. The same 
colored cells are updated in parallel. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Use of shared memory for updating the cells 
placed in horizontal (x) direction.  
 
 Shared memory is also used to update the cells placed 
in horizontal and perpendicular directions. In this case, we 
need to separate the update into the two steps as shown 
Figs. 5(a) and 5(b). The updated first two lows do not 
have dependency as shown in Fig. 5(a). However, since 
the cells in the last low are updated in another block, we 
need to reread the last low. Hence, the 4×(nx+2) internal 
states and outputs shown in Fig. 5(a) are read from global 
memory into shared memory in the first step, and the 3×
(nx+2) as shown in Fig. 5(b) are read in the second one. 
Therefore, the internal states and outputs are read and 
written twice from global memory, which accelerates the 
update of cells. 
 

 
Figure 5: Shared memory is used for updating the cells 
placed in horizontal (x) and perpendicular (y) directions. 
(a) First step. (b) Second step. 
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4. Results 
 
The image halftoneng templates [5] were used to evaluate 
the GPU implementation. We used GeForce GTX 560 Ti 
with 1.0GB global memory, 65.5KB shared memory, and 
1.67GHz clock speed. For a comparison, the results were 
compared with one obtained by Intel® Core™ i5 with 
4096 MB memory. 
 Figure 6 shows the conversion image obtained by the 
GPU, where an appropriate halftone image is obtained. 
The image is almost identical to Fig. 1(b) given by the 
GSN method [8]. From this fact, we see that the parallel 
computation scheme provided in Sect. 3 is valid. 

Tables 1 and 2 shows the comparison of CPU times 
between GPU and CPU implementations for different size 
of images. In these tables, direction x implies that shared 
memory is used to update the cells placed in horizontal (x) 
direction as shown in Fig. 4, and directions x and y are 
corresponding to Fig. 5. The speed up ratio without shared 
memory is not high. Fortunately, the ratio becomes high 
taking advantage of shared memory for update of more 
cells. As a result, we can accelerate the operation until 20 
times faster than CPU. 
 

  
 
 
 
 
 
 
 
 
 
 

Figure 7: Halftone image obtained by the 
asynchronous DT-CNN implemented on GPU. 
  
 
Table 1: Performance of GPU implementation for 256×
256 pixels image. 

direction  block size GPU [sec.] speed up 
 1 0.480 1.875 
x 1 0.149 6.048 
x 2 0.146 6.252 

x and y 1 0.109 8.294 
x and y 2 0.105 8.650 

 
 
Table 2: Performance of GPU implementation for 512×
512 pixels image. 

direction block size GPU [sec.] speed up 
 1 0.614 5.64 
x 1 0.239 14.50 
y 2 0.249 13.90 

x, y 1 0.181 19.08 
x, y 2 ― ― 

5. Conclusions 
 

We have presented the GPU implementation of 
asynchronous DT-CNNs. To accelerate the operations, the 
parallel computation scheme and utilizing the shared 
memory are provided. Using the halftoning templates, we 
confirm that the proposed implementation certainly speeds 
up the operations. 
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