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Abstract— In this study we investigated properties of
a voltage-based spike timing-dependent plasticity (STDP)
model, that is based on the presynaptic firings and the post-
synaptic membrane potential, by performing network mo-
tif extraction. We compared results obtained by a stan-
dard STDP model, in which synapses change depending
only on timing of pre- and postsynaptic firings. As a re-
sult, the voltage-based STDP can induce strong bidirec-
tional connections not only between two neurons but also
among three neurons. These results relate to localization of
strong feedforward connections. Our results suggest that
the voltage-based STDP model may realize the statistics of
synapses observed in cortical circuits.

1. Introduction

It has been generally believed that synaptic plasticity plays
an important role to accomplish higher-brain functions
such as memory, learning, and development since Hebb’s
postulation [1]. To maintain neuronal activity and pro-
cess information, synapses in the brain dynamically change
their weights depending on neuronal activities.

STDP is one of the synaptic modification principles in
the brain [2, 3]. In standard phenomenological models of
STDP, synaptic modifications are triggered only by precise
timing between pre- and postsynaptic spikes [4–6]. How-
ever, recent studies show that STDP depends not only on
precise timing between pre- and postsynaptic spikes but
also on frequency of pairing protocols, cooperativity of
synapses, and the postsynaptic membrane potential [7].

Although many of bidirectional connections in the cor-
tices have significantly strong weights [8, 9], the stan-
dard phenomenological STDP models cannot realize strong
bidirectional connections, that is, one connection between
two neurons is depressed if another connection is potenti-
ated [10]. In contrast to the standard models, a novel phe-
nomenological STDP model, which introduces the post-
synaptic membrane potential, can potentiate bidirectional
synaptic connections [11]. In Ref. [11], the connectiv-
ity between two neurons was discussed. In Refs. [8, 9],
it was shown that bidirectional connections in cortical cir-
cuits are more clustered compared with random networks,
then bidirectional connections among three neurons are
also stronger than unidirectional connections. It is natu-
ral to consider that such strong bidirectional connections
might be organized by STDP. Such clustering of strong
bidirectional synaptic connection should contribute to the
presence of the third-order correlations [12, 13]. Then, it
is very important to analyze the connectivity among three
neurons because the model of third-order correlations fits
experimental data much better than that of pair-wise corre-

lations.
Accordingly, we investigated properties of the voltage-

based STDP model with respect to bidirectional connec-
tions by analyzing connectivity patterns called network
motifs [14]. Our result showed that the voltage-based
model got much more strong bidirectional connections than
the standard model.

2. Materials and Methods

The dynamics of a single neuron model in our network is
written in the differential equations,

d
dt

v = 0.04v2 + 5v + 140 − u + I(t),
d
dt

u = a(bv − u),
(1)

where v and u were the membrane potential and the recov-
ery variable of the neuron [15]. v and u were reset to c and
u+ d if v reached 30 mV. In this neuron model, a, b, c, and
d were parameters. A synaptic current into a neuron was
described as I(t) = −gex(v−Eex)−ginh(v−Einh), where Eex
and Einh were reversal potentials. The kinetics of a synap-
tic conductance gex, obeyed the equation of τġ = −g with
a time constant τex, when synaptic inputs were absent. In
contrast to the absence of inputs, an arrival of a spike at an
excitatory synapse increased gex by grec

i . The variable ginh
also obeyed the same manner, but the unit of the increment
was ginh and a time constant was τinh. Both grec

i and ginh
represented the peak synaptic conductances.

Our network consisted of forty excitatory (regular spik-
ing) neurons and ten inhibitory (fast spiking) neurons. The
parameters for excitatory and inhibitory neurons in the neu-
ron model were referred to Ref. [15]. The excitatory neu-
rons in the network had all-to-all connectivity before learn-
ing. Each excitatory neuron received seven connections
from randomly selected inhibitory neurons and projected
back to eight inhibitory neurons.

In addition to the recurrent connections, each neuron re-
ceived inputs from 500 excitatory Poisson neurons through
feedforward connections. The circular boundary condition
was assumed, namely, the neuron 500 was next to the neu-
ron 1. The firing rates ρpre

i of these neurons were charac-

terized by the Gaussian profile ρpre
i = α exp

(
−(i−µ)2

2σ2

)
, where

α was the firing rate of a center neuron, and µ was the in-
dex of the center neuron. The center index of µ was shifted
at every T ms. The peak conductance of a feedforward
synaptic connection was gffi , and an arrival of a spike at a
synaptic terminal increased gex by gffi .
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Synapses between excitatory neurons were continuously
modified by the voltage-based STDP [11]. The changes of
the synapse i on a neuron were

d
dt

gi = −A−(u)Xi(t)(u− − θ−)+

+A+xi(v − θ+)+(u+ − θ−)+. (2)

The variable u− was low-pass-filtered membrane potential
with a time constant τ−, and behaved as

τ−
d
dt

u−(t) = −u−(t) + v(t). (3)

The variable u+ had the same form as Eq. (3) but had a
different time constant τ+. The trace of presynaptic spikes
xi was written by

τx
d
dt

xi(t) = −xi(t) + Xi(t), (4)

where Xi(t) =
∑

n δ(t − tn
i ) represented a presynaptic spike

sequence. Here tn
i was the arrival time of the nth spike at the

synapse i. In Eq. (2), A+ was the amplitude of long-term

potentiation (LTP), while A−(u) = A− u
2

u2
ref

was for long-term
depression (LTD). The amplitude of LTD varied depending
on the value u, which corresponded to the averaged value
of u− of the postsynaptic neuron. u− was averaged for 1 s
in accordance with Ref. [11]. Synaptic weights were con-
strained with hardbounds. The lower bounds of both grec

i
and gffi were zero, whereas the upper bound of grec

i was dif-
ferent from that of gffi . Their maximum values were respec-
tively described by grec

max and gffmax.
In addition to the voltage-based model, we also simu-

lated a neural network with a standard STDP model [4].
The dynamics of synaptic weights in the standard STDP
rule depended only on pre- and postsynaptic spikes, and
was expressed as

d
dt

gi = −AdXi(t)y(t) + ApY(t)xi(t), (5)

where Y(t) and y(t) were respectively the same as Xi(t) and
xi(t), but for a postsynaptic neuron. A time constant for y(t)
and xi(t) in Eq. (5) was τ. Ad and Ap were parameters that
determined synaptic changes when an interval of pre- and
postsynaptic spikes was close to zero.

In this study, we analyzed connectivity among excitatory
neurons in the recurrent network. We used local connectiv-
ity patterns called network motifs [14] to analyzed the con-
nectivity. We performed the network motif extraction with
a fast detection algorithm [16]. When we extracted the net-
work motifs, we considered only synapses, that exceeded a
threshold gθ = 2

3 grec
max in the recurrent network.

All the parameters are concluded in Table 1. The learn-
ing rates of Eq. (5) was set to different values from those of
Eq. (2) to make the amounts of synaptic changes of Eq. (5)
comparable with those of Eq. (2). It was impossible that
the amounts of synaptic changes of Eq. (2) was completely
matched to those of Eq. (5) because synaptic changes of
Eq. (2) varied depending on postsynaptic neuronal states.
In other words, although the learning rates of Eq. (2) was
much smaller than those of Eq. (5), values of membrane
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Figure 1: A schematic diagram of our experiment. Red
and blue nodes represent inhibitory and excitatory neurons.
Red and black arrows are inhibitory and excitatory synaptic
connections.

potential also contributed to synaptic changes in Eq. (2).
Then the differences of the learning rates filled the gap of
synaptic changes between Eqs. (2) and (5) during learning.
A schematic diagram of our experiments is depicted in Fig.
1.

3. Results

After learning with a standard STDP model, almost all the
synapses in the recurrent network are unidirectional even if
the duration are varied, whereas much fewer unidirectional
connections are strengthened by the voltage-based STDP
(Fig. 2A, ID 1). In contrast to unidirectional connections,
the tendency of bidirectional connections is opposite (Fig.
2A, ID 2). The voltage-based STDP frequently strengthens
bidirectional connections in the recurrent network. These
results are consistent with the results of Ref. [11].

This tendency is also inherited to three-neuron connec-
tivity patterns. All the connectivity patterns composed of
only unidirectional connections are frequently observed af-

Table 1: Parameters of the model.

Parameters Values
Eex 0 mV
Einh −70 mV
τex 5 ms
τinh 7 ms
grec 0.0036∗,∗∗, 0.06∗∗∗
ginh 0.08
α 30 Hz
σ 10
gff [0.0071, 0.0281]∗,∗∗, 0.05∗∗∗
A− 2.0 × 10−6

A+ 1.14 × 10−6

u2
ref 60 mV2

τ− 10 ms
τ+ 7 ms
τx 15 ms
grec

max 0.011
Ad 0.002
Ap 0.0021
τ 20 ms

* means initial values before learning but these values change according to STDP.
** indicates an excitatory synaptic conductance on excitatory neurons, and ***
indicates an excitatory synaptic conductance on inhibitory neurons.
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Figure 2: Synaptic connectivity in the recurrent network after the learning. (A) Two-neuron connectivity patterns. In each
panel, horizontal and vertical axes are the duration T for which the firing rates of the Poisson neurons were stable and
the frequency of the patterns. Forms of each connectivity pattern are indicated beside each panel. The corresponding ID
is shown with the connectivity patterns. Gray and green bars are for standard and voltage-based STDP, respectively. The
numbers above the bars show actual counts of the connectivity patterns.

ter the standard STDP learning (Fig. 2B, IDs 1, 2, 4, 5, 9).
As well as these patterns, the patterns of combinations of
bidirectional connections are only observed in the voltage-
based STDP case. In our numerical simulation, it is diffi-
cult for both models to construct three-neuron connectivity
patterns, that include both unidirectional and bidirectional
connections in the network (Fig. 2 B, IDs 3, 6, 7, 10, 11,
12). From these results, it is suggested that the voltage-
based STDP has a possibility to realize the statistics of
synapses observed in the fine-scale cortical circuits [8, 9],
if given connectivity to a network satisfies the anatomical
statistics of synapses.

Next, we observed neuronal activities in two networks
that were induced by the two different STDP rules. Neu-
rons in the network sparsely fire and their activities are
similar in both cases at first glance (Fig. 3 A). However,
a frequency distribution of inter-spike intervals (ISIs) of

the voltage-based model exhibits much different form from
that of the standard model (Fig. 3 B). In the standard model
case, neuronal firings are sparse and seem to be stochastic,
and are observed in all the excitatory neurons (Fig. 3 A,C,
left panels). On the other hand, in the voltage-based model,
firings of some neurons in the network are localized and the
other neurons do not fire as shown in Fig. 3 C, right panels.

Such differences of neuronal activities are derived from
the different way of organization of strong feedforward
connections. Organization of strong feedforward connec-
tions obviously differs between two models (Fig. 3 D). Al-
though many of the feedforward connections are depressed
by the standard STDP, all the excitatory neurons can obtain
some strong connections (Fig. 3 D, left panel). The induc-
tion of stochastic neuronal firings (Fig. 3 C, left panels) is
faithful to the organization of strong feedforward connec-
tions because many weak inputs and a few strong inputs
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are injected to neurons in the network by random shifts of
a center of the Gaussian profile. Strong unidirectional con-
nections in the network emerges in accordance with these
stochastic firings and an intrinsic property of the standard
STDP [10].

When the voltage-based STDP is applied, strong feed-
forward connections are localized and some neurons fail
to obtain strong feedforward connections (Fig. 3 D, right
panel). The Gaussian profile locating at strong feedforward
connections leads strong activations of neurons in the net-
work, so that neurons behave as shown in Fig. 3 C, right-
lower panel. In addition to the localization of the feedfor-
ward connections, the strong feedforward connections of
some neurons locates at the same position (Fig. 3 D, right
panel). For example, feedforward connections of the neu-
rons 6, 7, 15, and 29 are strong at the same position. Then
the localized firings of such neurons synchronously occur
if the Gaussian profile meets the location of strong feedfor-
ward connections. The localized firings are efficient for the
construction of strong bidirectional connections, not only
between two neurons but also among three neurons, in the
voltage-based STDP, because relatively high potentials of
neurons last for the period where these neurons are acti-
vated. Consequently, the voltage-based STDP can lead lots
of bidirectional connections in the network.

4. Conclusions

In this study we analyzed the properties of the voltage-
based STDP model with respect to strong bidirectional
connections. As a result, the voltage-based STDP model
makes bidirectional connections strong not only between
two neurons but also three neurons. Our results suggest
that this novel model has a possibility to reproduce the
statistics of synapses as observed in cortical circuits [8, 9].
The network discussed in this study had dense connections,
however, synaptic connections among neurons are gener-
ally sparse but nonrandom connectivity [8, 9]. In addition,
we did not consider the weight dependence of STDP in this
study [5,6,18,19]. Future work is to investigate the synap-
tic dynamics in the voltage-based STDP by introducing the
condition described above.
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