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Abstract—Electron behavior in nano-carbon materials
like graphene sheets and carbon nano tubes is described
approximately by the Dirac-type equation. If the quantum
electron waves on the materials are planar, the wave equa-
tion for the materials is transformed into a one-dimensional
classical wave equation. In this paper, we propose a proba-
bilistic cellular array which is a model of one-dimensional
classical wave systems with dissipation and can be a
stochastic quantization of the nano-carbon quantum sys-
tems. We assume particles moving from a cell to an adja-
cent cell of the cellular array for a unit time step. We then
proved analytically that the probability distribution of the
particles in terms of their location satisfied the discretized
classical wave equation. We also presented numerically
that the distribution met the solution of the classical wave
equation.

1. Introduction

Nano-carbon devices using graphene sheets and carbon
nano tubes (CNT) have been researched. Non-relativistic
electrons on graphene [1] are described approximately by
the Dirac-type equation that generally describes relativis-
tic quantum mechanical systems [2]. Models of quan-
tum effect devices for conventional circuit simulators like
SPICE can be built based on stochastic quantization for
non-relativistic quantum mechanical systems [3, 4]. A
nobel stochastic quantization for relativistic quantum me-
chanical systems is necessary to build models of graphene-
based devices for circuit simulators. Although stochas-
tic quantizations for the relativistic quantum systems have
been attempted [5], no quantization suitable to modeling
for circuit simulators has yet been invented.

When static scalar potentials on graphene sheets are uni-
form, the Dirac-type wave equation can be transformed
into a classical wave equation describing, for example, dis-
tributed parameter electric circuits. In this paper, we con-
sider a stochastic model of classical wave systems which
can be a stochastic quantization of the quantum nano-
carbon systems. Concretely speaking, we will present a
cellular array like probabilistic cellular automata [6] and
investigate whether the stochastic behavior of virtual par-
ticles on the array meets the classical wave propagation.
Preceding cellular automata models of wave systems are
not flexible [7]. They can not be dissipative nor their wave
propagation speed can not be changed.
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Figure 1: Probabilistic cellular array

2. A Probabilistic Cellular Array Model

Figure 1 shows a probabilistic cellular array and its cell
elements [8]. Each cell has two inputs a, b and two outputs
u, v. Internal connections between the inputs and outputs
are in parallel or crossed as shown in Fig. 1(b). The con-
nections switch randomly. Let probabilities that the cells
take parallel and cross connections be denoted by pstr and
pcrs respectively. Then, pstr + pcrs = 1. Let Celli, ai, and
bi denote a cell at location i in the cellular array and the
two inputs of the cell. Assume that there exists a particle at
an input of a cell. The particle passes through the cell and
moves to an input of its left and right adjacent cells at prob-
abilities pstr and pcrs for a unit time interval. If the particle
is at ai at time n, it will locate at bi−1 at probability pstr or
ai+1 at probability pcrs at time n + 1. Then, the input a/b
at which the particle locates and the increment/decrement
of the particle’s location i change every one time step ac-
cording to a Markovian transition diagram shown in Fig. 2.
This cellular array and the change of particle direction by
the internal parallel connections correspond respectively to
a conductor and electron scattering by thermal vibration of
the conductor lattice. That is, dissipation is represented by
the change of the direction.
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Figure 2: Transition of the direction of particles.

3. Theoretical Analysis

Let probabilities that the particle locates at ai and bi at
time n be denoted by a(n, i) and b(n, i). Evolutional equa-
tions of the probabilities are expressed by

a(n + 1, i) = pcrsa(n, i − 1) + pstrb(n, i − 1) (1)
b(n + 1, i) = pstra(n, i + 1) + pcrsb(n, i + 1) (2)

By a z-transformation from discrete time-space domain (n,
i) to two-dimensional z-domain (zt, zx), Eqs. (1) and (2) are
expressed by

M(zt, zx)
[
α(zt, zx) β(zt, zx)

]T
= 0 (3)

M(zt, zx) ≡
[
−zt + pcrsz−1

x (1 − pcrs)z−1
x

(1 − pcrs)zx −zt + pcrszx

]
(4)

where α(zt, zx) and β(zt, zx) are respectively the z-
transforms of a(n, i) and b(n, i). Eliminating α(zt, zx) or
β(zt, zx) from Eq. (3), we have

Det(M(zt, zx))α(zt, zx) = 0 (5)
Det(M(zt, zx))β(zt, zx) = 0 (6)

Inversely z-transforming Eq. (5) from (zt, zx) to (n, i) and
using the following first-order difference operators,

∆ta(n, i) ≡ a(n + 1, i) − a(n, i) (7)
∆xa(n, i) ≡ a(n, i + 1) − a(n, i) (8)

we obtain

∆ta(n + 1, i + 1) − (2pcrs − 1)∆ta(n, i + 1)
= pcrs(∆xa(n + 1, i + 1) − ∆xa(n + 1, i)) (9)

By using the following second-order difference operators

∆2
t a(n, i) ≡ ∆ta(n + 1, i) − ∆ta(n, i) (10)
∆2

xa(n, i) ≡ ∆xa(n, i + 1) − ∆xa(n, i) (11)

Eq. (9) is expressed as

(2pcrs − 1)∆2
t a(n, i + 1) + 2(1 − pcrs)∆ta(n + 1, i + 1)

= pcrs∆
2
xa(n + 1, i) (12)

It is obvious from equation set (5, 6) that b(n, i) also satis-
fies Eq. (12).

Partial difference equation (12) corresponds to the fol-
lowing partial differential equation with continuous inde-
pendent time and space variables t and x:

C1
∂2u(t, x)
∂t2 +C2

∂u(t, x)
∂t

= C3
∂2u(t, x)
∂x2 (13)

This equation describes one-dimensional dissipative wave
systems. Equation (12) is a discretization of Eq. (13) when
spatial and temporal discretization steps are 1.0 and the co-
efficients are given by C1 = 2pcrs − 1, C2 = 2(1 − pcrs), C3
= pcrs.

When pcrs = 1, the first-order temporal-difference and
differential terms in Eqs. (12) and (13) disappear. Thus,
the probabilistic cellular array is a model of lossless wave
systems. When 1/2 < pcrs < 1, all the coefficients of the dif-
ference terms in Eqs. (12) and (13) are positive. Then, the
probabilistic cellular array is a model of dissipative wave
systems. When pcrs = 1/2, the second-order temporal-
difference and differential terms in Eqs. (12) and (13) dis-
appear. Thus, the probabilistic cellular array is a model of
continuous diffusion systems with no advective term [9].

4. Numerical Experiments

We computed trajectories of 10000 particles starting at
Cell0 from time n = 1 to 500 when Pcrs = 0.98. We
then obtained probability distributions of the particle lo-
cation. For comparison, we obtained analytical solutions
of wave equation (13) on a condition that initial waveform
is a Gaussian wave packet with average of 0 and standard
deviation of 0.5. Figures 3 and 4 show the distribution and
the solutions.

The initial wave packet divides into forward and back-
ward wave packets. We see diffusion components be-
tween the two packets. Because the diffusion phenomenon
is slower than the propagation phenomenon, the diffusion
components are always between the wave packets. The
packet propagation is damped and changed into diffusion
components with the time. The propagating packets of the
probability distribution and the analytical solution have al-
most the same damping rate. Macroscopically, the diffu-
sion components of the packet of the probability distribu-
tion seem approximately twice as large as those of the an-
alytical solution. Microscopically, there exists no diffusion
components at cells with even/odd location indices i when
time n is odd/even. Therefore, the distribution density al-
most agrees with the solution height.

5. Graphene As A Classical Wave System

Stochastic quantizations such as the Nelson’s method
[10] can represent non-relativistic quantum systems by
classical probabilistic processes. On the other hand, as
mentioned in Section 2, we have no method of stochastic
quantization for relativistic quantum systems described by
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(e) Wave system, t=0
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Figure 3: Numerically obtained probability distributions of particle locations and analytical solutions of wave equation
(0 ≤ n, t ≤ 5)
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Figure 5: Structure of graphene

the Dirac equations. In this section, we present that a Dirac-
type equation describing the behavior of electrons on two-
dimensional graphene can be transformed into a classical
wave equation and that the cellular array can be a stochas-
tic quantization of graphene on limited conditions.

Graphene sheets are composed of carbons bonding to
one another as shown in Fig. 5. For more details on
graphene, see [1]. The behavior of electrons on graphene
sheets is described by the following approximate equation:

i~
∂

∂t
Ψ(x, y, t) =[

~vF

(
σxk̂x + σyk̂y

)
+ V(x, y)

]
Ψ(x, y, t) (14)

where ~ is the Plank constant divided by 2π and vF is the

Fermi velocity. Wave functionΨ(x, y, t)

Ψ(x, y, t) =
(
ψA(x, y, t)
ψB(x, y, t)

)
, ψA,B : R3 → C1 (15)

possesses two elements which are wave functions of the
electrons at the two carbon sites A and B. Site A and site B
are non-equivalent to form a unit cell of graphenes. The op-
erators in Eq. (14) are defined as k̂x ≡ −i∂/∂x, k̂y ≡ −i∂/∂y.
Pauli spin matrices σx, σy employed in the equation are
given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
(16)

Equation (14) is the two-dimensional Dirac equation with
mass of zero and light speed c replaced by vF .

Let the static scalar potential be spatially uniform, that
is V(x, y) = V and the wave function be represented by
Ψ(x, y, t) = Φ(x, y, t) exp(iVt/~). Then, we obtain the fol-
lowing equation without scalar potential term.

i~
∂

∂t
Φ(x, y, t) =

[
~vF

(
σxk̂x + σyk̂y

)]
Φ(x, y, t) (17)

Φ(x, y, t) =
(
φA(x, y, t)
φB(x, y, t)

)
(18)

Eliminating φA(x, y, t) or φB(x, y, t) from Eq. (17), we ob-
tain the following classical wave equation:

∂2

∂t2 φA,B(x, y, t) = v2
F

(
∂

∂x2 +
∂

∂y2

)
φA,B(x, y, t) (19)

When φA(x, y, t) and φB(x, y, t) are planar wave, Eq. (19)
becomes a one-dimensional classical equation (13) with no
dissipative term.
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Figure 4: Numerically obtained probability distributions of particle locations and analytical solutions of wave equation
(50 ≤ n, t ≤ 500)

6. Conclusions

This paper has presented a probabilistic cellular array
model of classical dissipative wave systems and shown an-
alytically and numerically that the model corresponds to
the wave systems. It also has been shown that the cellular
array can be a stochastic quantization model of graphene
sheets on certain conditions. Our future works include ex-
tending the cellular array to a two-dimensional model of
classical wave systems and to a model of graphene sheets
with non-uniform scalar potential.
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