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Abstract—In this paper, we study the dynamical behav-
ior of an unidirectional ring of neurons with distributed de-
lays affecting the communication paths. In order to detect
and analyze static and Hopf bifurcations in this system, we
use a version of a frequency-domain approach developed
for distributed delay equations. Our results suggest that
for a large enough number of neurons in the ring, a double
Hopf bifurcation may also occur.

1. Introduction

Very often, specially in biology, it is convenient to use
models with distributed time delays instead of concentrated
ones. So, it is appropriate to consider that the evolution of
the system depends on a continuum of previous values of
the state variables. For example, distributed delays (DD) in
biology have been used in models of cellular transmission
of viruses [1], prey-predator competence in a medium [2],
spread of epidemic diseases [3], etc.
In the context of neural networks, models based on DD
allow to consider the multiple channels between neurons,
each with a (possibly) different connection speed. Unfor-
tunately, to deal with a model with DD is not simple, and
even simple systems with just two neurons exhibit com-
plicated dynamics [4, 5, 6]. In a previous work [7], we
proposed a modified version of the method based on the
Graphical Hopf Bifurcation Theorem (GHBT) [8, 9] for
analyzing bifurcations in delay differential equations with
DD. We showed that the delay effect can be described sim-
ply by using properties of the Laplace transform.
Several authors have studied the problem of neural net-
works with DD in the connection paths, and also using the
GHBT. It is worth mentioning that the most common distri-
bution considered in biological applications is the so called
gamma kernel. For example, in [10] the authors analyzed
a two-neuron system with a weak gamma kernel, which
means an exponential decay on the weight of the past his-
tory. Later, in [5] they analyzed a similar network but con-
sidering the so called strong gamma kernel. A three-neuron
network, also with a strong gamma kernel has been consid-

ered in [11]. Finally, a two-neuron system with a weak
kernel, with not only delayed connections between the dif-
ferent neurons but also self connections in each neuron has
been studied in [6]. In these articles, the authors used the
chain trick to derive equivalent models expressed as ordi-
nary differential equations. The approach that we use here
is distinguished from the previous works by the fact that
we do not transform the original system into an equivalent
one. On the contrary, we represent the DD in the complex
variable of the Laplace transform, providing a simple way
to deal with the model in the frequency domain.

2. Problem formulation

In a previous article [7], we have studied a two-neuron
system originally proposed in [4]. In this work, we will
consider an analogous system but consisting of n neurons
connected in an unidirectional ring configuration

ẋ1(t) = −x1(t) + a1 f [xn(t) + bnxnk(t)] ,
ẋ2(t) = −x2(t) + a2 f [x1(t) + b1x1k(t)] ,

...
ẋn(t) = −xn(t) + an f

[
x(n−1)(t) + bn−1x(n−1)k(t)

]
,

xik(t) ,
t∫

−∞

k(t − u)xi(u)du, i = 1, 2, ..., n.

(1)
Neuron 1 is affected by the neuron n, the neuron 2 is af-
fected by the neuron 1 and so on, until the neuron n is
affected by the neuron n − 1. The state variables xi(t)
represent the potential of each neuron, ai determines the
range of values of the variable xi and bi is the weight of
the influence of the previous history of one neuron over
the other. We will suppose that the nonlinear activation
function f (·) is smooth and verifies the conditions f (0) =

0, f ′ , f ′(0) > 0. The function k(u) is called kernel
and weighs the previous values of the variable xi(t). In ad-
dition, it is assumed that k(u) satisfies k(u) ≥ 0, ∀u ≥ 0

and
∞∫
0

k(u)du = 1. In the following, we shall analyze the

dynamics of system (1) by using the GHBT.
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3. Analysis using the GHBT

System (1) can be studied through the frequency-domain
approach (see [7, 9]) by considering the feedback system
representation{

ẋ(t) = Ax(t) + Bg(y(t), yk(t); µ)
y(t) = −Cx(t), yk(t) = −Cxk(t) (2)

where x = (x1, ..., xn)T , A = −In, B = C = In and

g(y(t), yk(t); µ) =


a1 f (−bnynk − yn)
a2 f (−b1y1k − y1)

...
an f (−b(n−1)y(n−1)k − y(n−1))

 , (3)

where In is the identity matrix of order n and µ represents
the vector of parameters. Although it is obvious that the
equilibrium equations

x̂(k+1)mod n = a(k+1)mod n f
[
x̂k(1 + bk)

]
, 1 ≤ k ≤ n, (4)

may have more than one solution, we will focus on the dy-
namics around the trivial equilibrium ŷ = 0. System (2) is
equivalent to a linear subsystem with a nonlinear feedback
g(·). If we consider K(s), the Laplace transform1 of the ker-
nel function k(t), the linear subsystem is represented by the
transfer function

G(s) = C(sIn − A)−1B
(

In

In K(s)

)
=

1
s + 1

(
In

InK(s)

)
. (5)

In order to study the stability properties of the equilibrium
ŷ = 0, we compute the n × 2n Jacobian matrix

J(µ) =

(
∂g
∂y

∣∣∣ ∂g
∂yk

)∣∣∣∣∣∣̂
y∗=0

(6)

and the characteristic equation in the frequency domain
|λI2n −G∗(s)J(µ)| = 0 becomes

h(λ, s; µ) =
λn

(s + 1)n {λ
n(s + 1)n − (−1)nδnψ(s)} = 0, (7)

where δn,( f ′)n
n∏

i=1
ai, ψ(s),

n∏
i=1
ηi(s) and ηi(s),[biK(s)+1] .

3.1. Static bifurcations

As can be seen in [9], the bifurcations of equilibria can
be detected in the parameter space by looking for solutions
of h(−1, 0, µ) = 0.

3.1.1. Case 1: Different weights for every neuron

Let us first suppose that the weights of the previous his-
tory can be different for every neuron. Then we have

1Notice that under the conditions that we have assumed for the kernel
function, K(s) exists at least for Re(s) > 0.

Proposition 3.1.1 System (1) exhibits a static bifurcation
(ST) or bifurcation of equilibria only if the combination of
parameters satisfy

1 = δnψ(0). (8)

Proof: It is enough to consider h(−1, 0, µ) = 0, which is
equal to (−1)n − (−1)nδnψ(0) = 0. �

Remark 3.1.2 The system:

• Verifies a necessary condition for a ST if the previous
history has an excitatory effect on every neuron (bi >
0, ∀i).

• Will not exhibit a ST if bi = −1, for some i.

• May exhibit a ST only if ψ(0) > 0 and bi , −1, ∀i,
when the previous history has an excitatory effect on
some neurons.

Proposition 3.1.3 System (1) exhibits a double zero (DZ)

bifurcation only if the mean delay τm ,
∞∫
0

uk(u)du satisfies

τm = −
n
∆1
, ∆1 ,

n∑
i=1

bi

(bi + 1)
. (9)

Proof: Notice that h(λ, s; µ) = 0 ⇔ h̃(λ, s; µ) = 0 where
h̃(λ, s; µ) , λn(s + 1)n − (−1)nδnψ(s). Then we can find

∂̃h
∂s

∣∣∣∣∣∣
(−1,0;µ)

= (−1)n

n − δnK′(0)ψ(0)
n∑

i=1

bi

bi + 1

 . (10)

The condition for the existence of a DZ bifurcation
is obtained when the right-hand side of Eq. (10) is
equal to zero, and simultaneously, the ST condition
1 = δnψ(0) given by (8) holds. Taking into account that

K′(0) = −
∞∫
0

uk(u)du = −τm, we arrive to (9). �

Remark 3.1.4 The system is likely to exhibit a DZ bifurca-
tion only if the quantity ∆1 is negative.

Remark 3.1.5 If k(t) = δ(t − τ), where δ(·) is the Dirac
impulse, then the delay is concentrated (point delay) and
in this case τ should satisfy (9) in order to produce a DZ
bifurcation in system (1).

Proposition 3.1.6 System (1) will exhibit a triple zero (TZ)
bifurcation only if the following conditions hold

(ST) −1 + δnψ(0) = 0 ψ(0) > 0
(DZ) n + τm∆1 = 0 ∆1 < 0
(TZ) −τm f (τm) + σ2 = 0 ∆2 > 0, τm > τ(1)

m ,
(11)

where

∆2 =
n−1∑
i=1

bibi+1

(bi+1)(bi+1+1)
, f (τm) =

2∆2

n
τ2

m − τm − (n − 1)

σ2 =
∞∫
0

(t − τm)2k(t)dt τ(1)
m =

n
4∆2

1+

√
1+

8(n − 1)∆2

n

 .
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Proof: After some calculations, we find

∂2h̃
∂s2 = n(n−1)λn(s+1)n−2−(−1)nψδn

2
n−1∑
i=1

η′iη
′
i+1

ηiηi+1
+

n∑
i=1

η′′i
ηi

,
(12)

and the condition ∂2h/∂s2|(λ,s: µ)=(−1,0;µ) = 0 becomes

n(n − 1) − δnψ(0)
{
2τ2

m∆2 + K′′∆1

}
= 0, (13)

where K′′ , K′′(0) =
∞∫
0

t2k(t)dt. Then we have

n(n − 1) − δnψ(0)
{
2τ2

m∆2 + (σ2 + τ2
m)∆1

}
= 0. (14)

Replacing the conditions for a ST (8) and DZ (9) into (14),
we arrive to

n(n − 1) −
{
2τ2

m∆2 + (σ2 + τ2
m)(−n/τm)

}
= 0, (15)

which leads to σ2 = τm f (τm). In order to have a solution,
∆2 should be positive and obviously the mean delay must
satisfy f (τm) > 0. The leftmost root of f (τm) is negative
and the rightmost root of f (τm) is positive. Then, in order
to have a TZ, the mean delay must satisfy τm > τ(1)

m . �

3.1.2. Case 2: Same weight for every neuron

Now let us consider that the weights of the previous his-
tory is the same for every neuron, i.e., b1 = b2 = ... = bn =

b. Let us call the neural network (1) symmetrical in this
case (notice that the neurons are not necessarily identical).
Then we have

h̃(λ, s; µ) , λn(s + 1)n − (−1)nδn [bK(s) + 1]n , (16)

and the condition for a ST bifurcation reduces to 1 = δn(b+

1)n.

Remark 3.1.7 The symmetrical system will be likely to ex-
hibit a ST if

• n is even.

• n is odd and δ and b + 1 have the same sign.

Analogously, after some calculations we can state the con-
dition for a DZ bifurcation as

1 + γτm = 0, γ ,
b

b + 1
. (17)

Remark 3.1.8 In the symmetrical case, the system can ex-
hibit a DZ bifurcation only if γ < 0, i.e., 0 < b < 1.

By computing the second derivative ∂2h̃/∂s2 evaluted at
(λ, s; µ) = (−1, 0; µ) it is easy to show that the TZ bifur-
cation can not occur in the symmetrical case.
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Figure 1: Branches of the Nyquist diagram (λ0 in red, λ1
in blue, λ2 in black and λ3 in green) and the corresponding
numerical simulations for n = 4, with ai = 1.275, bi = 0.5,
∀i, p = 1. Up: α = 0.35, and the equilibrium point at the
origin is stable. Down: α = 0.25, the equilibrium point is
unstable and a stable periodic solution exists.

3.2. Hopf Bifurcations

The characteristic equation (7) can be solved for the vari-
able λ as

λ̂(s; µ) =
n

√
(−1)nδnψ(s)

(s + 1)n , (18)

then we have n solutions (branches), and the corresponding
frequency plots can be obtained from

λ̂k(iω; µ) =
|δ| |ψ(iω)|
|1 + iω|

1/n

ei(φ+2πk)/n, k = 0, 1, ..., n − 1,

(19)
where

φ =


Arg {ψ(iω)} − n arctan (ω), n even, or n odd

and δ < 0,
Arg {ψ(iω)} − n arctan (ω) + π, n odd and δ > 0.

(20)
In a similar way, for the symmetrical case, the characteris-
tic solutions are given by

λ̂k(iω; µ) = −δ
[bK(iω) + 1]

1 + iω
ei2πk/n, k = 1, ..., n−1. (21)

Figure 1 shows the Hopf bifurcation appearing for the case
of 4 neurons, where the kernel function is a weak gamma
kernel k(t) = αe−αt, t ≥ 0, then K(s) = α/(s + α). For
α = 0.35, none of the branches of the Nyquist plot encloses
the critical point−1, and the equilibrium point is stable. For
α = 0.25, one of the branches of the Nyquist curve encir-
cles the critical point and so the equilibrium is unstable and
a stable periodic solution exists. As (19) has n solutions, it
is feasible that for a large enough number of neurons, more
than one branch of the Nyquist plot may may pass through
the point −1. For example, Fig. 2 shows the correspond-
ing Nyquist diagrams for n = 15. Notice that there are
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Figure 2: Nyquist diagrams for n = 15, with ai = 1.275,
bi = 0.5, ∀i, p = 1 and α = 0.27. Notice that there are two
branches passing through the critical point −1 + 0i, λ0(iω)
(red) and λ1(iω) (blue).

DH

   Stable
equilibrium

Figure 3: Hopf bifurcation curves in the (δ, α) parameter
space. The red curve H0 is generated by the eigenvalue
λ̂0(iω) and the blue curve H1 is generated by λ̂1(iω).

two characteristic plots passing through the critical point
for the parameter values indicated in the figure. Moreover,
varying the parameters α and δ we can continue the Hopf
curves in the parameter space, as shown in Fig. 3. In this
diagram, H0 and H1 indicate the Hopf curves provoked by
the characteristic solutions λ̂0(iω) and λ̂1(iω), respectively.
The Hopf curves intersect each other on a double Hopf bi-
furcation point (noted as DH in Fig. 3). Both Hopf curves
end at the vertical line corresponding to ST bifurcation.

4. Conclusions

We analyzed a ring of neurons affected by DD in the
connection paths. Provided by the effect of the DD can be
represented simply using properties of the Laplace trans-
form, it is straightforward to apply the GHBT for such a
kind of models. We have shown how to detect static and
dynamic bifurcations, whose occurrence is related with the
properties of the delay distribution, as the mean and stan-
dard deviation.
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