
  

A Reinforcement Learning Approach to Course Decision of Ships under 
Navigation Rules 

 
Takeshi Kamio†, Shohei Sugeo†, Kunihiko Mitsubori††, Takahiro Tanaka†††,  

Chang-Jun Ahn†, Hisato Fujisaka†, and Kazuhisa Haeiwa† 
 

† Hiroshima City University, 3-4-1, Ozuka-higashi, Asaminami-ku, Hiroshima-shi, Hiroshima, 731-3194, Japan 
†† Takushoku University, 815-1, Tatemachi, Hachioji-shi, Tokyo, 193-0985, Japan 

††† Japan Coast Guard Academy, 5-1, Wakaba-cho, Kure-shi, Hiroshima, 737-8512, Japan 
Email: kamio@info.hiroshima-cu.ac.jp 

 
Abstract– The transportation by ship is very important in 
countries with seas and wide rivers. In the case of Japan, it 
accounts for about 40% of the domestic physical 
distribution and for 90% and more of the international 
physical distribution. Therefore, the course decision of 
ships is an important problem in the field of the marine 
engineering. However, the optimality of the course of 
ships and the interaction between the maneuvering actions 
of navigators have not been sufficiently discussed yet. We 
regard the multi agent reinforcement learning (RL), which 
is an important learning algorithm in the field of the 
artificial intelligence and the machine learning, as a useful 
tool to brisk up these discussions. In this paper, we 
propose the RL framework to decide the course of ships 
under the navigation rules. 
 
1. Introduction 
The course decision of ships before the actual navigation 
is an important problem in the marine engineering. The 
importance of this problem deeply relates to the value of 
ships as the transportation and the difficulty in retrying the 
maneuvering motion. This difficulty is caused by the 
following four characteristics of ships. 
1) The dynamics is nonlinear. 
2) There is no way to brake and go backward effectively. 
3) The attitude is unstable at a low speed. 
4) The control tower does not exit. 

In the field of the marine engineering, the course 
decision of ships has been treated in the maneuvering 
simulation and the automatic operation, where the course 
has been given as a guideline which the ship should trace 
and the procedures to avoid the collisions between ships 
have been discussed. But, the optimality of the course of 
ships and the interaction between the maneuvering actions 
of navigators have not been sufficiently discussed yet. 

We regard the multi agent reinforcement learning 
(RL), which is an important learning algorithm in the field 
of the artificial intelligence and the machine learning, as a 
useful tool to brisk up the above discussions. Our opinion 
is based on the following two reasons. The first reason is 
that the course by RL can easily satisfy the actual 
navigators since each agent of RL optimizes a sequence of 
the action through the repeat of trial and error, which is 
executed according to the natural passage of time. The 
second reason is that navigators should be modeled as the 

competitive-cooperative multi agent system since the 
control tower does not exit. 

Although there are a few works [1], [2] related the 
course decision of ships by RL, they are very simple 
methods and are not suitable for the actual navigation. 
Therefore, we propose the RL framework to decide the 
course of ships under the navigation rules in this paper. 
 
2. Simple application of reinforcement learning (RL) 

to course decision of ships 
2.1. Model of ship maneuvering motion 
We use a simple response model (i.e., KT model [3]) as 
the model of the ship maneuvering motion. Fig.1 shows 
the model in a bird’s eye view. OS is the center in turning 
the ship’s head and represents the ship’s location (i.e., OS 
=(x, y)). φ is the heading angle. L is the ship’s length. v0 is 
the forward velocity vector and its size is V0. The 
dynamics of the ship maneuvering motion is given by,  

φφδφφ cos,sin, 00 VyVxKT ===+ &&&&& ,   (1) 
where δ is the rudder angle. K and T are the parameters to 
characterize the ship maneuvering performance in still 
water. They are given by K=K0/(L/V0) and T=T0×(L/V0), 
where K0 and T0 are the dimensionless parameters. Each 
ship has individual values of K0 and T0. We fix the 
parameters K0, T0, and L at the corresponding values of 
the patrol vessel KOJIMA in Japan Coast Guard (i.e., K0= 
1.310, T0=1.085, L=107[m]). Since we consider the course 
decision of ships in the limited sea area, V0 is also fixed at 
the standard value (i.e., V0=6.17[m/s]). 
 
2.2. Model of sea area 
Fig.2 shows the model of the sea area which is used as the 
stage of RL in this paper. In this model, we refer to a 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Model of ship maneuvering motion.
x

Os

v0y

X

Y L

φ 

2009 International Symposium on Nonlinear Theory and its Applications
NOLTA'09, Sapporo, Japan, October 18-21, 2009

- 141 -



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
square as a grid and we fix its side length at L. Each grid 
is numbered for RL. There are four kinds of grids: normal 
one (white), no-entry one (gray), start one (“S”), and goal 
one (“G”). The no-entry grids represent the obstacles and 
the boundary where ships are permitted to move. 
Moreover, we assume that the tidal current does not affect 
the ship maneuvering motion. 
 
2.3. Basic RL framework to decide course of ships 
The Q-learning (QL) [4] is representative of RL. First, we 
explain the single agent QL. QL has the value function 
called Q-value, which is defined for each state-action pair. 
The aim of QL is getting Q-value to achieve a given task. 
QL is executed by iterating the following episodes. At the 
beginning of each episode, the environment is initialized 
(i.e., the agent is set to the starting point in each episode). 
After the agent senses the state st∈S from the perceptual 
inputs Pt and selects the action at∈A by the policy at the 
time t, the environment makes a transition to a new state 
st+1∈S and gives the agent a reward rt+1. In this case, Q-
value Q(st,at) is updated by 

)},(max{),()1(),( 11 asQrasQasQ tAattttt +∈+ ++−← γαα  (2) 

where α and γ are the learning rate and the discount rate 
respectively. If st+1 corresponds to the terminal state (i.e., 
the agent arrives at the goal or failure), the present episode 
is finished and the next episode is started. These processes 
are iterated until the agent completes Q-value to maximize 
cumulative reward under given learning conditions. If the 
desired Q-value is obtained, the agent can achieve a given 
task. The policy used here is based on the ε-greedy policy. 
That is to say, while the agent basically selects the action 
with the largest Q-value in the current state, the action is 
randomly selected with a small probability ε.  If ε=0, it is 
called the greedy policy. 

Next, we consider a simple application of QL to the 
course decision of n-ships [2]. To achieve this, the single 
agent QL has to be expanded into the multi agent QL. 
Here, we show only the essentials. The ship k (=1,⋅⋅⋅,n) is 
controlled by the agent k, which has its own Q-value. The 
aim of the agent k is finding the best course for the ship k 
to move from “Sk” to “Gk” without collisions. When the 
agent k has obtained Qk(sk

t,ak
t) to maximize cumulative 

reward, the ship k can move on the best course. The 
definitions of sk, ak, and rk are necessary for the agent k to 
obtain such Qk(sk

t,ak
t). The agent k senses the state sk

t from 

the perceptual inputs Pk
t (e.g., Pk

t=(xk
t, yk

t, φk
t,φ& k

t)). Since 
QL cannot handle infinite states, each element of Pk has to 
be quantized. xk and yk are quantized by grids as shown in 
Fig.2. φk∈[0°,360°] is divided into 12 equal parts and φ& k 

is divided into 2 parts based on its sign. The total number 
of states equals 21×21×12×2=10584. Therefore, sk is 
given as an integer included in [0, 10583]. The action ak

t 
corresponds to one of 5 rudder angles {0°,10°,−10°,20°, 
−20°} and ak is given as an integer included in [0,4]. The 
reward rk depends on the grid in which the ship k is. If the 
ship k is in “Gk”, no-entry grid, and the others, the agent k 
receives rk=1, rk=−1, and rk=0, respectively. However, if 
the ship k and other ships are in a grid at the same time, 
the agent k receives rk=−1. The agent k learns to avoid 
collisions by this interaction between ships. If all the ships 
arrive at their goal without collisions constantly, it means 
that the course decision of ships has been finished. 
 
3. Reinforcement learning (RL) to decide course of 

ships under navigation rules 
3.1. Collision situations and navigation rules 
The navigation rules are the knowledge to avoid collisions 
between 2 ships, which actual navigators acquired through 
their experiences. They are provided by the international 
regulations [5]. In this paper, we introduce 3 navigation 
rules into QL for the course decision of ships. These rules 
correspond to 3 typical collision situations: Head-on-
situation, Crossing Situation, and Overtaking.  

Figs.3, 4, and 5 show the collision situations and the 
corresponding navigation rules. In the case of Head-on-
situation shown in Fig.3(a), each ship must change the 
course to the right as shown in Fig.3(b). In the case of 
Crossing Situation shown in Fig.4(a), the ship which has 
the other ship on the right side must change the course to 
the right as shown in Fig.4(b). In the case of Overtaking 
shown in Fig.5(a), the overtaking ship must change the 
course to the  right or the left as shown in Fig.5(b). 
 
3.2. How to introduce navigation rules into RL for 

course decision of ships 
To introduce the navigation rules into QL for the course 
decision of ships, the agent k has to detect the ship l (≠k) in 
the view of the ship k, judge the collision situation of the 
ship k, and restrict the course of the ship k. We implement 
these requirements as follows. 

The view of the ship k is defined as the circle of 
radius Wk centered at the ship k. If Wk is larger than the 
distance (dkl) between ships k and l, the agent k can detect 
the ship l, and vice versa, as shown in Fig.6. 

If the agent k detects the ship l, it has to judge the 
collision situation from the position relation between ships 
k and l. As shown in Fig.7, the agent k can judge the 
collision situation by the angle Aj

kl, which is the direction 
of the ship k from the head of the ship l. For example, if 
the ship k is in Aj

kl∈[247.5°, 360°−Ah
kl], it is a give-way 

ship in Crossing Situation; similarly if the ship k is in 
Aj

kl∈[0°, Ah
kl] or [360°−Ah

kl, 360°], it is a give-way ship in 
Head-on-situation. Ah

kl is the angle to judge that ships k 
and l are in Head-on-situation, and it is calculated by 

|)}2/({sin2| 1
kl

h
kl dHA −×= .      (3) 
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Fig.2 Model of sea area. 
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As shown in Fig.8, the distance H is needed when the ship 
k meets the ship l. 
 If the agent k judges that the ship k should avoid the 
ship l (i.e., the ship k is a give-way ship), the dynamic no-
entry grids are added around the ship l as shown in Fig.9. 
These grids are based on the navigation rules. If the ship k 
enters them, the agent k receives the reward rk=−1. As a 
result, the course of ship k can be restricted appropriately. 
 
3.3. Expanded RL framework to decide course of ships 
Here, we propose a novel QL framework for the course 
decision of ships under the navigation rules. Our method 
consists of 2 stages.  

The first stage is the process to decide the temporary 
course of each ship k (=1,⋅⋅⋅,n). The temporary course is 
the course which each agent searches by the single agent 
QL, neglecting the other ships. When all the agents obtain 
their temporary courses, the first stage is completed. The 
aim of this stage is to decrease impractical collisions in 
the course decision of ships. 

The second stage is the process to decide the final 
course of all the ships under the navigation rules. We 
apply the multi agent QL similar to Sect.2.3 to this stage. 
Before starting the second stage, the agent k inherits 
Qk(sk

t,ak
t) from the first stage. At the beginning of each 

episode, each ship k departs from “Sk” for “Gk” and the 
agent k uses the greedy policy (i.e., ε=0). Each agent k 
always observes whether other ships are in the view Wk or 
not. If the agent k detects the ship l (≠k) in the view (i.e., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dkl<Wk), the agent k judges the collision situation by the 
criterion shown in Fig.7. If the ship k is a give-way ship, 
the dynamic no-entry grids are added around the ship l as 
shown in Fig.9. These added grids affect only the ship k. 
After detecting the ship l, the agent k uses the ε-greedy 
policy until the present episode is finished. If the ship k 
enters the grids added around the ship l, the agent k 
receives the reward rk=−1 and the ship k is removed from 
the sea area. On the other hand, the ship l receives no 
penalty. Also, if any ship enters the no-entry grids fixed in 
the sea area, the agent receives the reward r=−1 and the 
ship is removed from the sea area. If the ship k arrives at 
the goal, the agent k receives the reward rk=1 and the ship 

(a) collision (b) navigation rule 

Fig.3 Head-on-situation. 
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Fig.4 Crossing Situation. 
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Fig.5 Overtaking. 
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Fig.8 Angle for judgment of Head-on-situation.
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Fig.9 Dynamic no-entry grids added around ship l.
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k is removed from the sea area. When all the ships are 
removed from the sea area, the present episode is finished. 
If all the ships arrive at their goal without collisions 
constantly, it means that our method completes the course 
decision of ships under the navigation rules. 
 
4. Simulation Results 
Simulations have been carried out to confirm that our 
proposed method can decide the course of ships under the 
navigation rules appropriately. Each ship has the common 
parameters except the size of the velocity. The common 
parameters are as follows: α=0.2, γ=0.9, ε=1.0×10−7, W= 
10L, H=L, Bhf=2L, Bhs=9L, Bcf=10L, Bcs=L, Bof=5L, Bos=2L. 
The overtaking ship has 3V0 and the others have V0.  

Figs. 10, 11, and 12 show the courses corresponding 
to 3 typical collision situations between 2 ships: Head-on-
situation, Crossing Situation, and Overtaking. Fig.13 show 
the course corresponding to a complex collision situation 
between 4 ships. Each course is emphasized every 250 
time-steps (Δt=0.2[s]) of numerical integration by the 
corresponding mark. From these simulation results, we 
have confirmed that each temporary course has the 
predicted collision and each final course has no collision 
and obeys the navigation rules appropriately. 

Finally, we discuss the convergence of our learning 
method. Generally the convergence of QL is guaranteed 
by the assumption that the environment does not change. 
Although our learning method changes the environment 
by the dynamic no-entry grids in the second stage, we 
have not observed the convergence problem in these 
simulations. From these facts, we think that the temporary 
courses decided in the first stage could stabilize both the 
position and existence duration of the dynamic no-entry 
grids to a great extent; as a result, the presence of the 
dynamic no-entry grids did not cause serious damage to 
the convergence of our learning method. 
 
5. Conclusions 
We have proposed the RL framework to decide the course 
of ships under the navigation rules corresponding to 3 
typical collision situations (Head-on-situation, Crossing 
Situation, and Overtaking). Simulation results have shown 
that our method can obtain an appropriate course which 
obeys the navigation rules. In the future, we will estimate 
our method as an assessment tool for the sea traffic. 
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Fig.13 Collision between 4 ships. 
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