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Annina Nef†, Stefan Glüge‡, Thomas Ott‡ and Peter Kauf‡

†Department of Mathematics, ETH Zurich and Faculty of Economics, University of Zurich
Rämistrasse, CH-8006 Zurich, Switzerland and

SCOR Services Switzerland Ltd., General Guisan-Quai 26, CH-8022 Zurich, Switzerland
‡IAS Institute of Applied Simulation, ZHAW Zurich University of Applied Sciences

Campus Reidbach, CH-8820 Wädenswil, Switzerland
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Abstract— This paper examines causal relationships
between the three factors in the Fama-French model and
investigates, whether the efficient-market hypothesis is a
suitable assumption in describing excess stock returns.
Three methods were used to detect causal dependencies,
namely the crosscorrelation method, the Granger causality
approach and Transfer Entropy. The excess market return
was found to be the leading model factor. Adding its lagged
values improved the model fit.

1. Introduction

In finance a standard problem consists of predicting the
future value of a financial time series. In an autoregressive
model the future value is a linear function of its preceding
values. More sophisticated methods may include the his-
tory of other variables. Methods detecting causalities are
useful tools to investigate the impact of certain variables
on others. In this paper the quantities of interest are the
variables involved in the Fama-French model.

The Fama-French model describes the expected return
on a stock as a linear function of three macroeconomic vari-
ables. By denoting Ri the return on stock i, its excess return
over the riskfree rate RF is given by

E(Ri)−RF = βi(E(RM)−RF)+ siE(SMB)+hiE(HML), (1)

where RM is the return on the market portfolio [4]. The
first model factor is therefore the excess market return with
weight βi. The second model factor, SMB, is defined by
the difference between the return on stocks of firms with
small and large market capitalization, while the third vari-
able, HML, describes the difference in the returns between
stocks with high and low book-to-market ratio. The respec-
tive weights, si and hi, as well as βi, are real numbers.

In the following we assume expected returns to be ac-
curately described by realized returns. This is justified by
the rationale expectation theory, claiming realized returns
to be realizations from the ex ante distributions of returns
[6]. By denoting the realized excess return on the market

and stock i at time t by RMRF(t) and ERi(t) respectively,
equation (1) in its realized form is given by

ERi(t) = βiRMRF(t) + siSMB(t) + hiHML(t) + ξi(t), (2)

where ξi(t) is an error term which has zero expectation in
time and is uncorrelated to RMRF, SMB and HML.

This paper examines, whether there is a driving force
among the three variables describing excess stock returns
by the Fama-French model. Also, we investigate, whether
it may be meaningful to extend the model by adding lagged
values of the driving factor. For this purpose the aim is to
detect causalities among the involved financial quantities.

2. Materials and Methods

The time series, which the experiments were based on
consist of monthly data from February 1973 to August
2013. Realizations of the risk-free rate as well as the Fama-
French factors were taken from Kenneth French’s data li-
brary (see [1]). These quantities are built upon continu-
ously compounded returns on stocks traded in the US-stock
exchanges NYSE, AMEX, and NASDAQ and the risk-free
rate is given by the 1-month Treasury bill return. The return
on stocks is represented by the realized, continuously com-
pounded monthly return of the US-firm Coca Cola (KO).
The underlying price was obtained from the data library
“Datastream”.

In order to detect causal relationships, we considered
three methods. The first two, namely the crosscorrelation
and Granger causality method, are well established, while
the third, Transfer Entropy, is a more recent approach.

2.1. Crosscorrelation

The crosscorrelation method is based on the definition
of the correlation function, which computes the correlation
between two random variables. Applying the sample cross-
correlation function to realizations across two different co-
variance stationary time series, where one of them is shifted
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by a fixed time lag, one obtains a measure for the linear de-
pendency of one time series on the other by the specified
time lag.

2.2. Granger causality

In its general form the Granger causality method com-
pares two conditional distributions of the future random
variable of the target process, where one of the conditions
is weaker than the other. The conditions are thereby de-
scribed by sigma-algebras. The smaller is generated by the
present and all previous random variables of the target pro-
cess (Ys)s≤t, while the larger is generated additionally by
the present and all past random variables of the causing
process (Xs)s≤t. The target process is said to be Granger
caused by the other, if the conditional distributions differ
[3].

2.2.1. Linear Least Squares Granger Causality

In order to make the Granger causality method opera-
tional, we consider a point forecast and therefore assume
the conditional distribution to be well described by the con-
ditional expectation. Then we approximate the later by a
linear function in the random variables generating the cor-
responding sigma-algebra. These simplifications are justi-
fied by the facts, that, for strictly stationary processes, the
conditional expectation minimizes the prediction error in a
least squares sense and that the approximation of the con-
ditional expectation by a linear function is exact in the case
of Gaussian processes [2].

By comparing the two resulting linear regression fits
with the classical F-test we obtain the linear least squares
Granger causality, short LLSGC, method. In statistical
terms the two fits are given by

ys+1 ∼ ys + ys−1 + · · · + ys−order+1 (3)
ys+1 ∼ ys + ys−1 + · · · + ys−order+1

+ xs + xs−1 + · · · + xs−order+1,

(4)

where order specifies the number of maximal lagged
values incorporated in the regressions. The correspond-
ing p-value being smaller than 0.05 indicates a statistically
significant causal relationship between causing and target
process.

2.3. Transfer Entropy

Transfer Entropy, a method based on information theory,
is a measure for the reduction of uncertainty of the future
value yt+1 of the target process by additionally knowing the
history of the causing process (Xs)s≤t to its own past (Ys)s≤t.
The uncertainty of the outcome of a random variable can
be measured by entropy. For a discrete random variable Y
taking values on a set A its entropy is given by

H(Y) =
∑
y∈A

p(y) log2

(
1

p(y)

)
bits, (5)

where p(·) is the probability mass function of Y . Hence,
entropy only depends on the probability distribution of a
random variable. Transfer entropy is defined upon condi-
tional entropies. The conditional entropy of Y given X is
given by

H(Y |X) =
∑
x∈A

p(x)
∑
y∈A

p(y|x) log2

(
1

p(y|x)

)
bits (6)

and describes the uncertainty of Y given X. Let us now
consider two stochastic processes (Xt)t∈Z and (Yt)t∈Z tak-
ing the values xt and yt in a countable set A and denote
by X(k)

s = (Xs, · · · , Xs−k+1) the vector containing the last k
variables of (Xt)t starting from Xs, where s is a natural num-
ber. Then, Transfer Entropy, T (Yt+1|Y

(l)
t , X

(k)
s ), describes the

reduction in the uncertainty of Yt+1 due to the additional
knowledge of X(k)

s given the knowledge of Y (l)
t . It is de-

scribed by the quantity

T (Yt+1|Y
(l)
t , X

(k)
s ) = H(Yt+1|Y

(l)
t ) − H(Yt+1|Y

(l)
t , X

(k)
s ). (7)

By applying the definition of conditional entropy, Transfer
Entropy can be expressed by joint and conditional proba-
bilities,

T (Yt+1|Y
(l)
t , X

(k)
s ) =∑

yt+1∈A,y(l)
t ∈Al,x(k)

s ∈Ak

p(yt+1, y
(l)
t , x

(k)
s ) log2

 p(yt+1|y
(l)
t , x

(k)
s )

p(yt+1|y
(l)
t )

 ,
(8)

where the measure is in bits and x(k)
s and y(l)

t are vectors of
samples of X(k)

s and Y (l)
t , respectively [5].

The quantity given in equation (8) can be estimated from
time series, which should be realizations from strictly sta-
tionary processes. In order to estimate the probabilities re-
liably, a large amount of data points needs to be consid-
ered. Nevertheless, small probability estimations are in-
evitable, which can lead to an explosion of the estimated
Transfer Entropy. Hence, there are several numerical is-
sues to be considered when implementing Transfer En-
tropy. Note, that unlike the crosscorrelation and Granger
causality method, this approach does not rely on linearities.

3. Results and Discussion

The estimated crosscorrelation between the Fama-
French factors are significant for several lags. Most of
them are found in the crosscorrelation plot between RMRF
and SMB at negative lags (Figure 1), indicating a possi-
ble causal influence of RMRF on SMB. The LLS Granger
causality test confirms this observation, since we obtain
highly significant values for different orders (Table 1). This
is an evidence, that the market capitalization factor strongly
depended on the behavior of the excess market return one
month ahead. Note, that we use the abbreviation σR,S

t to
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Figure 1: Crosscorrelation plots across the three Fama-
French factors.

Order 1 12 24

σR,S
t 3.0 · 10−6 6.2 · 10−5 2.1 · 10−6

Table 1: p-values of the LLS Granger causality test,
(RMRFt)t → (SMBt)t, for different orders.

denote the sigma-algebra generated by the factors RMRF
and SMB.

Further, the crosscorrelation method applied to RMRF
and HML gives one significant correlation value at lag 0
(Figure 1). The values obtained by the Granger causal-
ity approach with RMRF being the causing and HML the
caused variable are nevertheless significant for order 1 and
higher orders (Table 2). Therefore, also the book-to-market
ratio factor was Granger caused by the excess market re-
turn.

Last, the estimated crosscorrelation between SMB and
HML is significant at lag 0 and lag 1 (Figure 1), the later in-
ferring that HML influenced the values of SMB one month
later. The corresponding Granger causality test gives a
significant result for order 1, while for higher order num-
bers they are non-significant (Table 3, first line). Extend-
ing the above Granger causality test by including past val-
ues of RMRF in the regression fits we obtain highly non-
significant results already for order 1 (Table 3, second line),
confirming the influence of RMRF on SMB. Hence, we
conclude that the market excess return was the driving vari-
able among the Fama-French factors.

The sample crosscorrelation between RMRF and the ex-
cess return on the Coca Cola stock, ERKO, gives a signif-
icant value at lag 0. Together with the highly significant
results of the extended version of the LLS Granger causal-
ity method, which just takes the contemporaneous values
of the causing process into account (Table 4, order = 0),
it confirms the relevance of the market excess return in a
model describing the returns on stocks.

The classical Granger causality test gives highly signif-

Order 1 12 24

σR,H
t 2.0 · 10−2 1.5 · 10−2 2.5 · 10−2

Table 2: p-values of the LLS Granger causality test,
(RMRFt)t → (HMLt)t, for different orders.

Order 1 4 12 24

σH,S
t 7.0 · 10−3 7.7 · 10−2 0.15 0.12

σH,S ,R
t 0.12 0.54 0.79 0.61

Table 3: p-values of the LLS Granger causality test,
(HMLt)t → (SMBt)t, for different orders and sigma-
algebras.

Order 0 1 2

σR,EKO
t 1.7 · 10−14 2.4 · 10−21 1.2 · 10−20

Table 4: p-values of the LLS Granger causality test (ex-
tended by lag 0 values), (RMRFt)t → (ERKOt )t, for different
orders.

icant results as well (Table 5), claiming that the excess
market return caused excess stock returns. Assuming the
efficient-market hypothesis, claiming prices to reflect all
past available information, to hold, the last finding would
not be of interest. However, this theory may be questioned.
The results of the extended LLS Granger causality method
for orders 1 and 2 are far more significant than the one for
order 0, meaning that predictions for the excess stock return
were more accurate when including lagged to the contem-
poraneous values of RMRF.

Results from a Transfer Entropy analysis extend the find-
ings of the LLS Granger causality tests. As described in
Sect. 2.3, the estimation of the Transfer Entropy from time
series poses algorithmic challenges due to small probabili-
ties. Therefore, the preprocessing is essential. We normal-
ized each of the Fama-French factors onto [0, 1] and then
discretized the interval into 20 steps, as depicted in Figure
2. With the preprocessed time series, the Transfer Entropy
was then computed (Table 6). We detect the strongest di-
rectional influence from HML onto RMRF at time order
s = 12. The reverse influence, RMRF onto HML is also
strong, indicating that HML and RMRF are related, but
with unclear causality structure. The directional influence
of S MB onto RMRF at time order 12 is also noticeable,
here the reverse influence, RMRF onto S MB at the same
time order is considerably lower, indicating a causal influ-
ence of S MB onto RMRF. Note that the time orders 1 and
12 exhibit higher Transfer Entropy values than 24 in all
cases except for the RMRF influence onto S MB.

The LLS Granger causality results in Table 3 for time
orders 12 and 24, HML onto S MB without inclusion of
RMRF, oppose the results of the Transfer Entropy anal-

Order 1 12 24

σR,EKO
t 3.0 · 10−7 1.4 · 10−4 1.3 · 10−4

Table 5: p-values of the LLS Granger causality test,
(RMRFt)t → (ERKOt )t, for different orders.
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Figure 2: Fama-French factors, normalized to [0, 1], dis-
cretized into 20 steps as preparation for Transfer Entropy
analysis. Only a fraction of the full time span is shown, not
exploiting the whole range of values.

s	  [month] 1 12 24

RMRF	  	  -‐-‐>	  	  	  SMB 0.2158 0.2058 0.2370
RMRF	  	  -‐-‐>	  	  	  HML 0.2775 0.2887 0.2870

SMB	  	  -‐-‐>	  RMRF 0.2390 0.2707 0.2505
SMB	  	  -‐-‐>	  	  	  HML 0.2637 0.2611 0.2446

HML	  	  -‐-‐>	  RMRF 0.2755 0.3014 0.2909
HML	  	  -‐-‐>	  	  	  SMB 0.2040 0.2250 0.2241

Table 6: Transfer Entropy results for different time lags s.

ysis. LLS Granger suggests that orders 12 and 24 show
less strong (even non-significant) influences than order 1.
Similarly opposing is the ranking of the influences RMRF
onto HML, which gets high ranking in the Transfer En-
tropy analysis and RMRF onto S MB, getting lower rank-
ing. LLS Granger causality suggests a reverse order of the
strength of influence, judging from p-values that differ by
orders of magnitude (compare Table 2 and Table 1).

These differences may be due to various effects. Once,
Transfer Entropy may have caught non-linear interactions.
Secondly, the required assumption of normally distributed
residuals required for LLS Granger is not perfectly satis-
fied (not shown here). This could lead to inaccuracies in
the results. Thirdly, the processes look heteroschedastic
(Figure 2), and therefore violate the assumption of station-
arity (a KPSS test for instationarity does not strictly con-
firm this, but shows tendencies for HML being instationary,
p = 0.066).

Our findings can be summarized as follows. Since both

approaches, the crosscorrelation and the Granger causal-
ity method, are based on linearities, their test results are
mainly supported by each other. Applied to the financial
time series involved in equation (2), we conclude, that the
excess market return was the leading variable among the
three Fama-French factors. SMB and HML depended on
RMRF, while the later significantly caused the excess stock
return. Further, the efficient-market hypothesis, which the
Fama-French model relies on, was questioned in this set-
ting, since the test results of the extended Granger causality
method improved when including lagged values of RMRF
in addition to the contemporaneous values in the regression
fits. We therefore suggest to incorporate lagged values of
the excess market return in describing excess stock returns.
Transfer Entropy does not confirm all the findings of LLS
Granger. It suggests that RMRF is influenced by S MB, not
the other way round. The influence of RMRF onto HML
is compatible with the findings of LLS Granger.

4. Outlook

Detecting causality structures is an intrinsically difficult
problem. Not only are there strong assumptions on the time
series (stationarity and stationarity in dependence struc-
ture), but the results typically depend onto parametrization
(the time lags involved in LLS Granger and Transfer En-
tropy) as well as preprocessing (normalization and binning
for Transfer Entropy). The authors are aware of the anal-
ysis presented being preliminary, there are still many steps
to take in order to build reliable causality detection algo-
rithms.
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