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Abstract– In this paper a novel fractional system 

including a memristor is introduced. Specifically, chaotic 

behaviors in the simplest fractional memristor-based 

system are shown. Stability analysis of the system 

equilibria and numerical integrations are carried out, with 

the aim to show that chaos can be found when the 

fractional-order of the proposed system is as low as 2.895. 

1. Introduction 

Fractional calculus represents a topic of great interest 

in the field of nonlinear theory and its applications [1]. 

This happens because several physical phenomena can be 

described more accurately by fractional differential 

equations rather than integer models [1]. Nowadays a 

number of techniques are available for approximating 

fractional derivatives and integrals [2]. Therefore, 

fractional calculus plays an important role in physics, 

electrical circuit theory, control systems and chemical 

mixing [3]. In particular, a significant role is played in 

chaos theory, where it has been shown that chaotic 

phenomena can be obtained in nonlinear systems with 

fractional-order [4]. Referring to chaotic dynamics, several 

fractional systems have been proposed starting from the 

chaotic integer counterparts. For example, by considering 

the Chua’s circuit, some fractional counterparts (analyzed 

using different numerical methods) have been proposed 

[5]. Similarly, the fractional Rössler system, the fractional 

Lorenz-based multi-wing system and the fractional Chen 

system have been proposed starting from the 

corresponding integer systems [6]-[7]. Recently, an 

interesting example of fractional memristor-based chaotic 

system has been introduced, starting from the integer 

counterpart [8]. The memristor  is the missing circuit 

element studied by Chua in 1971 and realized by 

Williams’s group of HP Labs in 2008 [9]. 

Based on previous considerations, the idea of 

developing a new fractional system arose. Specifically, in 

this paper the simplest fractional memristor-based chaotic 

system is proposed starting from the integer counterpart 

[10]. A theoretical analysis of its dynamics is illustrated, 

along with numerical simulations, showing chaos. 

The paper is organized as follows. In Section 2 the 

fundamentals of fractional derivative and memristor are 

illustrated. In Section 3 a stability analysis for the 

equilibrium point of the proposed fractional system is 

carried out. Then, a condition is considered, according to 

which the fractional system remains chaotic starting from 

the chaotic integer counterpart. In Section 4 a predictor-

corrector algorithm is applied to solve the considered 

system. In particular, a chaotic attractor is found when the 

order of the derivative is 0.965q  . 

2. Basic notions on fractional calculus and memristor  

2.1. Caputo’s fractional derivative 

Referring to fractional calculus, among the different 

definitions of derivative proposed in the literature, in this 

work the fractional differential operator 
0

q

t
D  of order 

q
+
 proposed by Caputo is utilized [11]: 
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Note that the Caputo derivative (1) is a better choice 

for fractional-order circuits, since the initial values 

required by the Caputo definition coincide with 

identifiable physical states in the considered system [2]. 

2.2. Memristor model 

The memristor realized by a team from HP Company 

is a electronic device that has generated great interest by 

virtue of the large number of its potential applications 

(i.e., applications to next generation computers and brain-

like “neural” computers) [9]. Given the charge Q and the 

magnetic flux Ф, the memristor is a passive two-terminal 

device generally described by the nonlinear constitutive 

relation ( )M Mv M Q i  between the terminal voltage Mv  

and current Mi [12]. The nonlinear memristance M(Q) is 

defined by ( ) ( )M Q d Q dQ , representing the slope of 

the function Ф = Ф (Q). Note that a memristor with a 

differentiable Q−Ф characteristic curve is passive if, and 

only if, its memristance M(Q) is non-negative [12], i.e. 

 ( ) ( ) 0M Q d Q dQ  . Among the different models 

of memristors proposed in the literature, this paper 

focuses on the current-controlled memristive system 

described by the circuit equations [12]: 

( ) 

( , )

M M

M

v R u i

u f u i



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 (2) 

where u is the internal state, ( , )Mf u i  is the internal state 

function whereas R(u) is the memristance. 
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3. The fractional-order memristor-based system 

Among the various integer-order memristor systems in 

literature [13]-[15], the one proposed in [10] is the 

simplest autonomous integer chaotic circuit that includes a 

memristor. Namely, the circuit in [10] contains only three 

elements connected in series, i.e. an inductor with current 

Li , a capacitor with voltage 
Cv  and a memristor with 

memristance  
2( ) 1.5( 1)R u u  . According to [10], where 

the internal state is ( , ) 0.6M M Mf u i i u i u   , the integer-

order memristor equations (2) can be rewritten as: 
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 By considering the equations (3) and by defining  

Cx v ,  
Ly i  and  z u , the equations of the proposed 

fractional memristor-based system are derived: 
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where 
qD   denotes the Caputo fractional operator defined 

in (1) with initial time t0 = 0 and order q(0, 1) [11]. 

4. Dynamics of the simplest fractional memristor-

based system 

In order to study system (4), at first a stability analysis 

of its equilibrium points is developed. Then, a condition 

for system (4) to remain chaotic is considered. 

4.1. Stability results 

By defining the vector  
T

x y zx , system (4) 

can be rewritten in the following general nonlinear form: 
* ( )qD x f x . (5) 

Note that system (4)-(5) has only one equilibrium point at 

the origin  0 0 0
T

eq x . According to Lyapunov’s 

indirect method, the stability property of xeq = 0 for system 

(5) can be investigated by considering its stability for the 

corresponding linear system. To this purpose, the 

nonlinear fractional system (5) is linearized around the 

equilibrium point xeq = 0 as: 
* qD x J x  ,      0 1q   (6) 

where  

eq 

 
  

  0x

f
J

x
 is the Jacobian matrix of f  with 

respect to x at xeq = 0. Now, for the linear fractional 

system (6) the following stability theorem is given [16]. 

Theorem 1. The linear fractional system (6) is 

asymptotically stable if all the eigenvalues  of the 

Jacobian matrix J satisfy the condition: 

 arg
2

q


  . (7) 

Now, the following result, based on Lyapunov’s direct 

method, states the stability relationship between the 

fractional linear system (6) and the fractional nonlinear 

system (5). 

Theorem 2. If the fractional linearized system (6) is 

asymptotically stable (i.e., if all eigenvalues  of the 

Jacobian matrix J satisfy arg( )
2

q


   ), then the 

equilibrium point xeq = 0 of the fractional nonlinear system 

(5) is asymptotically stable.  

The proof of Theorem 2 can be found in [17]. Based 

on previous theorems, the following Corollary on the 

unstable equilibria is given. 

Corollary. If at least one eigenvalue  of the Jacobian 

matrix J satisfy arg( )
2

q


   , then the equilibrium xeq = 

0 of the fractional nonlinear system (5) is unstable.  

Previous theoretical results make clear that the stability 

condition for fractional systems differs from the condition 

given for integer systems. In particular, the right half plane 

(unstable region) for integer systems maps into a ‘wedge’ 

in the case of fractional systems, indicating that the 

unstable region becomes smaller and smaller when the 

value of order q is decreased (see Fig.1). 

4.2. A condition to remain chaotic 

 Based on previous results, now the aim is to apply to 

system (4) the necessary condition given in [18], 

according to which a fractional system, derived from the 

chaotic integer counterpart, remains chaotic when q is 

larger than a proper value. By considering both systems 

(3) and (4), it can be readily shown that the Jacobian 

matrix J associated to eq  0x  has one negative real 

eigenvalue and two complex conjugate eigenvalues with 

positive real parts: 

1

2

3
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0.2500 0.5204

j j

j j



  

  

 


   
    

. (8) 

Recall that an equilibrium point is said a saddle point 

of index 2 if it has one stable eigenvalue and two complex 

conjugate unstable eigenvalues [18]. According to the 

previous considerations, it is worth noting that for the 

integer system (3) the equilibrium eq  0x   is undeniably 

a saddle point of index 2, whereas for the fractional 

system (4) the equilibrium eq  0x   is a saddle point of 

index 2 only if q is selected so that λ2 and λ3 lie in the 

unstable region (see Fig.1). Now assume that the integer 

system (3) displays a chaotic attractor around the saddle 

point xeq = 0 of index 2. According to [18], a necessary 

condition for the fractional system (4) to remain chaotic is 

keeping the eigenvalues λ2 and λ3 in the unstable region. 
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(a) 

 

(b) 

Fig.1. Examples of stable and unstable regions in fractional systems for 

two choices of q. (a): eigenvalues 2 and 3 belong to the unstable region 

for a selected q1 < 1; (b): the same eigenvalues 2 and 3  now belong to 

the stable region for a selected q2 < q1 < 1. 

This means that the order q must satisfy the condition 

[18]: 

12
tanq



 

  
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 

. (9) 

The inequality (9) can be derived from the previous 

Corollary. Namely, according to the Corollary, the 

eigenvalues λ2 and λ3 are kept in the unstable region by 

taking 2/3arg( )
2

q


   , which is equivalent to 

   1 2tan q    . Since 0  , it follows that 

   1tan 2q    , from which the condition (9) is 

readily derived. In conclusion, given the eigenvalues (8) 

where  0.2500   and 0.5204  , the condition (9) for 

the fractional system (4) is satisfied when q > 0.715. 

5. Chaotic attractor 

The predictor-corrector algorithm, which belongs to 

the Adams–Bashforth–Moulton schemes, is adopted to 

solve the fractional system (4) [19]. By applying the 

predictor-corrector algorithm, the solution of the 

fractional system (4) is: 
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By taking into account the results illustrated in the 

previous Section, at first the integer system (3) is 

considered. In [10] it has been shown that the integer-

order system (3) displays a chaotic attractor around the 

saddle point xeq = 0 of index 2 (see eq. (8)), which is 

reported in Fig.2. 

 
Fig.2. Chaotic attractor of the integer system (3) on the (x,y)-plane. 
 

Now, according to the inequality (9), the fractional 

system (4) satisfies the necessary condition for remaining 

chaotic when q > 0.715. Figure 3 shows the plot of a 

chaotic attractor found for q = 0.965. Note that the chaotic 

nature of the attractor is confirmed by the computation of 

the maximum Lyapunov exponent [20]. Since a positive 
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value is found (max = 0.969), this confirms the chaotic 

dynamics of system (4). 

Now,  according  to  Theorem  2, for q < 0.715 the 

origin  xeq = 0  of system (4) is an asymptotically stable 

equilibrium point (i.e., all its eigenvalues lie in the 

stable/grey region of Fig.1(b)). In this regard, Figure 4 

depicts the system behavior for q = 0.710, indicating that 

the stable dynamics start from the initial condition (0.1, -

0.1, 0.2) and reach the origin. 

Finally, it worth noting that the condition (9) is not 

sufficient for assuring that system (4) remains chaotic. To 

this purpose, for q = 0.720 (i.e. q > 0.715) fractional 

system (4) possesses a non-chaotic behaviour (see Fig.5). 

 
Fig.3. Chaotic attractor of the fractional system (4) when 0.965q  . 

 
Fig.4. Stable dynamics for the fractional system (4) when 0.710q  . 

 
Fig.5. Non-chaotic behaviour of the fractional system (4) for 0.720q  . 

 

6. Conclusions 

In this paper, the simplest fractional-order memristor-

based system characterized by chaotic behaviors has been 

presented. A theoretical analysis of the system dynamics 

has been illustrated in detail. In particular, a stability 

analysis for the equilibrium point of the proposed 

fractional system has been carried out. Finally, accurate 

numerical simulations via the predictor-corrector 

algorithm have shown the presence of a chaotic attractor 

obtained when q = 0.965. 
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