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Abstract—In our previous research, the Maximum-
Flow Neural Network (MF-NN) was proposed, and we
showed that the MF-NN is possible to solve any maximum-
flow problems. Each neuron of the MF-NN is connected by
nonlinear resistances with the saturation saturation prop-
erty. However, the conventional MF-NN using the sig-
moidal function has problems where the sigmoidal func-
tion dose not converge to 0, 1 that is saturation value. In
this research, the saturation property is improved by using
the picewise linear function. Moreover, this novel method
is possible to considerably reduce a calculation cost.

1. Introduction

The spread of the Internet continues to increase in mod-
ern society. Thus, having a method to send data quickly
with a little loss is very important. This problem is com-
monly known as the maximum flow problem [1, 2], and
the maximum flow algorithm offers the best solution to the
problem of determining which route is appropriated to ex-
change data. Hence, the importance of the maximum flow
algorithm is growing from the viewpoint of transportation
capacity. The maximum flow problem involves streaming
a large quantity of the flow from a starting point to a termi-
nal point in the given network. In general, an information
stream in a branch that satisfies the following conditions is
called a flow; the flow does not exceed the capacity of the
branch (the capacity condition), and the sum of the inflows
is equal to the sum of the outflows (the flow preservation
condition) on each node. The nodes incident to a branch
exist in three-dimensional spaces in a network, and they are
connected to the branch such that a graph consists of nodes
and branches. The capacity of the branch (communication
capacity) and the gain exist in each branch. The capacity
indicates the limit of inflow or outflow, and the gain can
enlarge or reduce the flow [3].

Over the years, various algorithms have been developed
to solve the maximum flow problem. The Ford-Fulkerson
algorithm [4, 5] and the preflow-push algorithm [6, 7] are
two well known methods developed to solve this maximum
flow problem. However, these algorithms are for computa-
tion by sequential machines without analog parallelism.

In our previous research, we proposed the Maximum-
Flow Neural Network (MF-NN) [8], and we showed that
the MF-NN is possible to solve any maximum-flow prob-

lems. The MF-NN in which each branch nonlinearity has
a saturation characteristic and by which the maximum flow
problem can be solved by using analog high-speed parallel
processing [9, 10]. In a nonlinear resistive network, each
nonlinear resistance with the saturation for the I−V charac-
teristic is described by the sigmoidal function. Originally,
to fill the maximum flow algorithm, it is necessary to use
the monotone increasing nonlinear function f (x) of which
0 � f (x) � 1 consists. Since nonlinear function f (x) that
uses the sigmoidal function is defined by 0 < f (x) < 1,
the function is approximately converged in the vicinity of
f (x) = 0, f (x) = 1. However, the sigmoidal function has
the character that the differential coefficient becomes very
small around the convergence value. Therefore, there is a
problem that takes an awful lot of convergence time of the
solution of the state equation very much.

In this paper, we propose a novel MF-NN using the
piecewise linear (PWL) function for solving this problem.
Additionally, we show that the computation time can be
greatly decreased. The relativity of the convergence time
and the accuracy of the solution by the difference of the
gain of the sigmoidal function is simulated. And, the con-
vergence time and the solution are compared by MF-NN
using the PWL function, and results are discussed.

2. The maximum flow algorithm

The maximum flow theorem is one of the most basic
theorems of the network flow problem. When a positive
constant branch capacity ck is allocated in each branch
bk ∈ B(N) on network N as a graph, the N is a commu-
nication network or transportation network. It is shown
as N = [V(N), B(N)] for nodes set V[N] and branches set
B[N]. The notation C(N) is a set of branch capacity {ck}.
A directed branch bk connected from node vi to v j on N is
denoted by bk = (vi, v j) = bi j. A flow f from s ∈ V(N) to
t(t � s) ∈ V(N) in the communication network N is defined
by

∑

v j∈Γ(vi)

f (vi, v j) −
∑

v j∈Γ−1(vi)

f (v j, vi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F : vi = s
−F : vi = t
0 : vi � s, t,

(1)
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0 � f
(
vi, v j

)
� c
(
vi, v j

)
,

(
vi, v j

)
∈ B(N), (2)

where

Γ(vi) = v j | (vi, v j) ∈ B(N),

Γ−1(vi) = v j | (v j, vi) ∈ B(N). (3)

F = F( f ) in Eq. (1) is the value of flow f , and node s and
t are the source and the sink respectively.

Let the left part of Eq. (1) be the flow that flows out
from vi, then the Eq. (1) represents the restriction, where
the flow from source s is F and the flow from sink t is −F
and the flow from arbitrary node vi � s, t is 0. Also, if
the flow f (vi, v j) that flows in each (vi, v j) ∈ B(N) is the
branch flow, then Eq. (2) represents the restriction where
the branch flowing on each branch bi j flows only in the
direction from vi to v j and it does not exceed the branch ca-
pacity c(vi, v j). In the communication network N, a branch
set (X, Y) is defined as

(X, Y) = {(vi, v j) ∈ B(N)|vi ∈ X, v j ∈ Y}, (4)

where X, Y ⊂ V(N). The branch class (X, Y) has a source
on X and sink on Y. For arbitrary flow f , the flow f (X, Y)
which flows (X, Y) is given by

f (X, Y) =
∑

(vi ,v j)∈(X,Y)

f (vi, v j). (5)

In the flow f of the communication network N, a flow f0
that gives the maximum value of F( f ) expressed by F0 =
max[F( f )] is called the maximum-flow.

3. The maximum-flow neural network

3.1. Conventional MF-NN

The network topology of the MF-NN is shown in Fig.
1. An input layer and an output layer of the network are
corresponding to the start point S and the terminal point T ,
and each point corresponds to a single neuron, and layer
number of inner layer is m. Additionally, the propagation
between the neighboring neurons is interactive. That is, the
MF-NN has feedback connections. The layer number of
inner layer changes depending on how to connect the neu-
rons. The structure is determined by a given transportation
network. Fig. 2 shows the connection between the neu-
ron vi and the neuron v j by the nonlinear resistive network.
The Ai j is nonlinear resistance that exists between the neu-
ron v j and the neuron vi. The MF-NN has the saturation
characteristic such that the entire network converges to the
equilibrium state if a certain amount of the current in the
starting point s goes out. The I − V branch characteristic
from the neuron vi to the neuron v j is described by

Ii j = Ai j f (ui − u j), (6)

where

f (x) =
1

1 + exp(−ax)
, (7)

Figure 1: The network topology of MF-NN

Ai j is the maximum capacity c(vi, v j) of the current in bi j
and a positive constant value. Ii j is a current that flows
from the neuron vi to v j, and ui and u j are node voltages of
the neuron vi and v j respectively. The constant a is the gain.
The state equation with respect to the neuron vi is given by

Fi(ui) ≡ Ci
dui

dt

= −
n∑

v j∈Γ(vi)

Ai j f (ui − u j)

+

n∑

vk∈Γ−1(vi)

Aki f (uk − ui), (8)

where

Γ(vi) = v j|(vi, v j) ∈ B(N),

Γ−1(vi) = vk |(vk, vi) ∈ B(N). (9)

Ci is a capacitor that exists between the neuron vi and the
ground. By solving the differential equation Eq. (8) con-
cerning the neuron vi (i = 1, 2, · · · , n), the state of each
neuron (node voltage) ui can be obtained. As a result, the
potential differences between neurons and the branch cur-
rent value corresponding to the voltage differences between
each neuron are obtained.

Combining the equations of the maximum flow algo-
rithm were shown from Eq. (1) to Eq. (4), the state equa-

Figure 2: Association between neuron i and j
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tion of the MF-NN, Eq. (8) can be rewritten as

lim
t→∞Ci

dui

dt
= −

n∑

v j∈Γ(vi)

Ai j f (ui − u j)

+

n∑

vk∈Γ−1(vi)

Aki f (uk − ui)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−F : vi = s
F : vi = t
0 : vi � s, t,

(10)

0 � Ai j f (ui − u j) � Ai j = c
(
vi, v j

)
,

(
vi, v j

)
∈ B(N). (11)

Since the equilibrium state to fill Eq. (10) is described by

lim
t→∞Ci

dui

dt
= 0 (vi � s, t), (12)

Eq. (12) shows the state where the network is saturated.
That is, only when the MF-NN is saturated, the state equa-
tion conform to the maximum flow algorithm. Moreover,
since each current value (the flow) Ii j becomes the maxi-
mum value in the saturated state, the F of Eq. (10) shows
the maximum flow F0.

3.2. Problems of Conventional MF-NN

Essentially the nonlinear function f (x) should be used
under the condition that f (x) satisfies the condition 0 �
Ii j � Ai j. However, the I − V characteristic of the con-
ventional MF-NN depends on the sigmoidal function as
shown in Eq. (6), (7). The sigmoidal function is defined
as 0 < f (x) < 1, therefore f (x) is approximately converged
in the vicinity of f (x) = 0, f (x) = 1.

In conventional MF-NN, the condition 0 � Ii j � Ai j is
realized by raising the gain a. For example, the velocity
that approaches f (x) = 0, 1 can be changed by the differ-
ence of the gain a, and f (x) is converged early by rais-
ing the gain a. However, since differential coefficient ap-
proaches 0, it takes a lot of computing time until conver-
gent solutions of the simultaneous differential equation of
MF-NN are obtained.

3.3. Novel MF-NN using PWL function

To solve the problem of conventional MF-NN, other
nonlinear function f (x) is used. Ideal f (x) to fill the maxi-
mum flow algorithm is given by

f (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 (b � x),
g(x) (0 � x < b),
0 (x < 0).

(13)

where, b is positive constant and g(x) is monotonically in-
creasing function. Since f (x) is constantly a positive func-
tion, the backflow phenomenon where a positive current
flowed to a negative potential difference was occasionally

generated in conventional MF-NN. To avoid this backflow
phenomenon, the function that passes point f (0) = 0 and
f (a) = 1 is selected.The nonlinear function f (x) that con-
tains those conditions is defined by,

f (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 (b � x),
x (0 � x < b),
0 (x < 0).

(14)

Since the PWL function has the feature with constant dif-
ferential coefficient, the function has an advantage that the
solution can be obtained at the very high speed in the nu-
merical analysis of the nonlinear simultaneous differential
equation that uses Newton method.

4. Simulation Results

In this research, we use a network which has mutual cou-
pling as shown in Fig. 3. This network has the start-point
node us, the inner layer nodes u1, u2, u3, u4, and the termi-
nal node ut. The initial voltage of the network analyzed is
set to us = 10V . And, there are mutual coupling branches
bi, j(i, j = 1, 2,3, 4), and the branch capacities ci, j are given
on each branch bi, j as shown in Fig. 3. Since ci, j � c j,i, we
show that the novel MF-NN can solve complex problems
in maximum flow problems.

The problem of the conventional MF-NN is that the error
of a maximum flow occurs especially in the case of mutual
coupling network analysis. The network shown in Fig. 3
is small-scale, but enough results to compare the perfor-
mances is obtained.

The influence on the solution by the difference in gain a
of various patterns is entertained. The content b of the PWL
function Eq. (14) is set to b = 1. Under these conditions,
the simulation results are compared.

Table 1 is a table where the current value (flow) of each
branch by the difference of each gain a and each maximum
flow are shown. Table 2 shows the calculation frequency
where the node voltage of node 1 converges. As a result,
in the case of conventional MF-NN, the error margin of
the maximum flow becomes small when the the gain a is
raised. However, there is a fault of an awful lot the calcula-
tion frequency, and taking a lot of converging time. On the
other hand, proposed MF-NN using PWL function doesn’t
have the error margin of the maximum flow, and the cal-
culation processing time is also very fast compared with
conventional MF-NN.

Figure 3: Analyzed network
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Table 1: Comparison between result by difference of gain a of conventional MF-NN and result by the novel MF-NN
branch Nonlinear Resistance Gain Gain Gain Gain Gain PWL function Conventional

from A to B 0.5 1.0 1.5 2.0 3.0 MF algorithm
S→ 1 60.00 (Ω) 46.0696 (A) 56.5124 (A) 59.2834 (A) 59.8621(A) 59.9952(A) 60.00 (A) 60
S→ 3 10.00 (Ω) 9.4537 (A) 9.9741 (A) 9.9990 (A) 10.00(A) 10.00(A) 10.00 (A) 10
1→ 2 30.00 (Ω) 25.7011 (A) 28.8279 (A) 29.7504 (A) 29.9516(A) 29.9983(A) 30.00 (A) 30
1→ 3 20.00 (Ω) 16.7911 (A) 19.1932 (A) 19.8376 (A) 19.9689(A) 19.9989(A) 20.00 (A) 20
1→ 4 10.00 (Ω) 9.3493 (A) 9.8921 (A) 9.9810 (A) 9.9965(A) 9.9999(A) 10.00 (A) 10
2→ 1 20.00 (Ω) 2.8659 (A) 0.7814 (A) 0.1664 (A) 0.03229(A) 0.0011(A) 0.00 (A) 0
2→ 3 20.00 (Ω) 9.3346 (A) 9.8332 (A) 10.1213 (A) 10.1939(A) 10.2113(A) 2.35 (A) 0
2→ 4 10.00 (Ω) 7.0615 (A) 7.8841 (A) 8.1540 (A) 8.2131(A) 8.2269(A) 7.65 (A) 10
3→ 1 10.00 (Ω) 1.6045 (A) 0.4034 (A) 0.0812 (A) 0.0155(A) 0.0005(A) 0.00 (A) 0
3→ 2 10.00 (Ω) 5.3327 (A) 5.0834 (A) 4.9393 (A) 4.9031(A) 4.8943(A) 0.00 (A) 0
3→ 4 50.00 (Ω) 36.6514 (A) 39.6960 (A) 40.5860 (A) 40.7776(A) 40.8218(A) 32.35 (A) 30
4→ 1 20.00 (Ω) 1.3015 (A) 0.2159 (A) 0.0379 (A) 0.0070(A) 0.0002(A) 0.00 (A) 0
4→ 2 20.00 (Ω) 5.8770 (A) 4.2319 (A) 3.6920 (A) 3.5737(A) 3.5463(A) 0.00 (A) 0
4→ 3 30.00 (Ω) 8.0092 (A) 6.1824 (A) 5.6484 (A) 5.5334(A) 5.5069(A) 0.00 (A) 0
2→ T 20.00 (Ω) 17.6488 (A) 19.6446 (A) 19.9399 (A) 19.9889(A) 19.9996(A) 20.00 (A) 20
4→ T 50.00 (Ω) 37.8745 (A) 46.8420 (A) 49.3426 (A) 49.8731(A) 49.9952(A) 50.00 (A) 50

Maximum Flow f (s, 1) + f (s, 3) 55.5233(A) 66.4866(A) 69.28244(A) 69.8621(A) 69.9952(A) 70.00(A) 70.00

Table 2: Calculation frequency until converging
Gain 0.5 Gain 1.0 Gain 1.5 Gain 2.0 Gain 3.0 PWL function

122(times) 137(times) 244(times) 809(times) 10000(times) 66(times)
567.3(ms) 624.72(ms) 1134.6(ms) 3761.85(ms) 46500(ms) 47.85(ms)

5. Conclusions

In this paper, a novel MF-NN using PWL function was
proposed. Simulation results indicated that convergence of
the sigmoidal function of conventional MF-NN greatly in-
fluences at accuracy and the convergence time of the so-
lution. The error margin with the correct maximum flow
became small by raising the gain a. However, there was
a fault that takes a lot of computation time. On the other
hand, the equivalent result of the maximum flow algorithm
was able to be obtained by using novel MF-NN using PWL
function. In addition, the computation time was sped up
very much. Along with making of more large-scale net-
work, the error margin of the maximum flow and the com-
putation time of conventional MF-NN become larger prob-
lems. Therefore, novel MF-NN has been improved to a
very superior algorithm.
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