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Abstract—Clustering of different visual patterns
from background noise is a task which is easily per-
formed by the human visual system but still proves
to be difficult problem for artificial systems. The Se-
quential Superparamagnetic Clustering (SSC) [1] al-
gorithm can be used to cluster the visual patterns and
provides a relative measure of stability for each cluster.
By using an eye tracking aparatus which measures the
human visual scan paths, a comparisson between sta-
tistical properties of the scan paths, and the relative
stability for the clusters given by the SSC algorithm
is determined. This comparisson of visual scan paths
and relative stability provides insight into how the hu-
man visual system performs the task of clustering and
quantifies how similar the SSC algorithm is to the hu-
man visual system.

1. Introduction

When viewing a scene that is larger than the human
eyes field of view, the eye will perform rapid eye move-
ments or saccades, followed by time intervals where
the eye is stationary on areas of interest which are de-
fined as visual fixations [2], these combined saccadic
motions and intervals of visual fixations are collectivly
known as the visual scan path. An open problem in
understanding visual perception is to model the rela-
tionship between the visual scan path and the proper-
ties of the visual scene that is being examined. Visual
information is supressed during the saccadic motion
and gained during the visual fixation periods on areas
of interest [3], as such a quatitative measure relating
these areas of interest could provide valuable insight
into modelling the visual scan paths of human vision.
The use of clustering algorithms to segment images
into areas of interest is well documented[], however
these clustering algorithms do not provide any mea-
sure or ordering between these clustered areas of in-
terest which would be required in order to develop a
model relating the visual scan path to the properties of
the visual scene. The Sequential Superparamagnetic
Clustering (SSC) algorithm [1], based on a statistical

physics model of magnetic spin systems, provides an
ordering of it’s output clusters based on a temperature
measure of stability. By clustering the visual scene us-
ing the SSC algorithm, the ordering of stability induces
a ordering on the areas of interest in the visual scene
which can be compared to the statistical properties
of the visual fixations in these same areas of interest.
Thus a model of the visual scan paths based on the
output of the SSC algorithm can be defined. Section
2 provides a brief overview of the SSC algorithm and
it’s application to clustering visual scenes as well as
the output of the algorithm for the visual scene used
for the experiment. Section 3 is a description of the
apparatus used to measure the visual scan paths and
the visual scene used during the experiment. Section 4
explains how the statistics of the visual scan paths are
related to the stability measure of the SSC algorithm.
Finally section 5 shows the experimental results as well
as a discussion on future research

2. The SSC Algorithm and Clustering of Vi-

sual Images

The task of clustering is defined as the grouping
of similar objects. Clustering has found applications
in diverse fields such as bioinformatics [4], chemoin-
formatics [5], neuroscience [6]. As the concept of
similarity between objects is ambiguous the cluster-
ing problem is inhearently ill defined. The sucess of
a clustering algorithm will therefore depend upon the
relavance of the similarity measure to the goal of the
clustering task. When the similarity is defined by by
multiple attributes it is natural to define a fuzzy de-
scription of the cluster wherein the mebership of a ob-
ject to a cluster is determined by a likeihood function.
Furthermore clusters of objects inherently emerge in
nested hiearchies. While the success of the cluster-
ing is ambiguous there are some requirements that are
beneficial for a a clustering algorithm to posess. The
following list of requirements are all satisfied by the
SSC clustering agorithm.

• The SSC algorithm provides a unique clustering
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hiearchy and provide a measure of of the natural-
ness of the cluster. The notion of a natural cluster
is a group without any significant substructure.

• The SSC algorithm does not assume any apriori
information about shape or internal distribution
of the clusters or have the number of clusters pre-
defined.

• The SSC algorithm is based on a set of pairwise
affinities which allows the optimizing ofresults by
optimizing the measure of similarity.

• The SSC algorithm can easily deal with clusters
of different shapes, densities and largely unequal
distances between clusters.

While other clustering algorithms are often opti-
mized for special situations they do not take the above
requirements into account. In particular the fourth
requirement is typically overlooked and as such the
standard clustering algorithms have great difficulties
in finding natural clusters for inhomogeneous distri-
butions of objects [7] which are prevalent in real world
applications. As the SSC algorithm has been com-
pletly described in [1], the following is only a brief
outline of the technical details of the algorithm.
In order to cluster N objects with pairwise affinities
dij , and inhomogeneous grid of of Potts spins is con-
structed as follows: each object idexed by i is repre-
sented by one site of the grid with Potts spin variable
si where siǫ {1, . . . , q}. q is typically chosen between
10 and 20 [1] ( however the choice of q does not effect
the number of clustes to be found ). Each spin is sy-
metrically coupled to it’s k neighboors with a coupling
strength

Jij = Jji =
1

K
exp

(

−d2
ij

2a2

)

(1)

where K is the average number of coupled neighboors
per site, and a is a scale length. Each spin configu-
ration is characterized by an energy expressed by the
Potts spin Hamiltonian

H(s) =
∑

(i,j)

Jij

(

1 − δsi,sj

)

(2)

where si, sj denotes a spin configuration. Using equa-
tion (1) and equation(2) the probabilty of a spin con-
figuration is given by

p(s) =
1

Z
exp (−H(s)/T ) (3)

For small temperatures T , like spins will be aligned.
As T increases the system transitions from a super-
paramagnetic phase where strongly coupled spins are
aligned and weakly coupled spins behave indepen-
dantly, as so clusters of like aligned spins ( or objects

) begin to emerge. At a high temperature T the sys-
tem enters a parametric phase wherewhere only single-
ton clusters of objects remain. As the temperature T
increases existing clusters are broken up into smaller
subclusters as so the SSC algorithm satisfies the re-
quirement that a clustering algorithm should provide
a hiearchy of clusters of objects. For any given tem-
perature T any two spins or objects i, j belong to the
same cluster if the pair correlation

Gij =
∑

s

p(s)δsisj
(4)

exceeeds a given threshold. The calculation of the
pairwise correlation given by equation 6 is not feasi-
ble for large data sets but can be approximated using
a belief propagation algorithm, which results in the
approximation

Gij ≈
∑

sisj

bij(si, sj)δsisj
(5)

The beliefs bij(si, sj) are given by

bij(sisj) = c
∏

k∈N(i)/j

m∞

k→i(si)
∏

l∈N(j)/i

m∞

l→j(sj) (6)

where c is a temperature based coefficient described
fully in []. The messages m∞

k→i(si), m∞

l→j(sj) are de-
termined by an iterative message update

mt+1
p→q(sq) = k

∑

sp

e2Jpqδspsq /T
∏

r∈N(p)/q

mt
r→p(sp) (7)

with initial messages m0
p→q(1) = y, m0

p→q(−1) = 1−y
and 0.5 < y < 1 for all connections p → q.

2.1. Applying the SSC to visual images

The SSC algorith can be used to cluster a image by
considering each pixel i = (xi, yi) as an object and
defing a distance measure between pixels by

di,j = α|I(xi, yi)− I(xj , yj)| × |(xi, yi)− (xj , yj)| (8)

which weights the euclidean distance between pixels
by the difference in pixel intensities denoted by I(x, y),
with an additional weighting factor α. Given the im-
age shown in figure (1) and a distance measure of equa-
tion (8), applying the SSC algorithm produced the de-
sired clusters which are the most obvious to the viewer.
Figure (2) shows the output heirarchy of clusters for

the image shown in figure 1.

3. Measuring the Visual Scan Path

The visual scan path described in section 1 was mea-
sured using a “Dr. Bouis” occulometer. The occu-
lometer homogenuously illuminates the eye with in-
frared light and measures the reflection onto a two di-
mensional detector which yields separate vertical and
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Figure 1: Test Image with four visible clusters labeled A, B,
C, and D. The background cluster is not labeled

Figure 2: The output hierarchy of clusters given by the SSC
algorithm. The realtive ordering of the stability is given by
C > B > A > D. The fifth cluster represents the background
noise.

horizontal position values for the eye movement. Due
to inhearent measurment errors in the eye tracking ap-
paratus, each test subject was first required to perfom
a calibration phase in which they would visually fix-
ate on clearly defined points of a calibration image
with similar dimensions to the test image shown in
figure (1). The measured eye positions and the cor-
responding calibration image is shown in figure (3A),
where a piecwise triangular mapping of the measured
to desired eye positions is assumed. Using the cali-
bration information, eye position measurments can be
corrected using local affine approximations determined
by

[ab] = M × [AB] (9)

M = [ab] × [AB]−1 (10)

with vectors a,b,A and B as shown in figure (3B). An
example of calibrated output measurments for a test
subject viewing the image shown in figure (1) is shown
in figure (4). As the pixels of the test image have a
size greater than the resolution of the eye tracker the
calibrated eye movements were binned to group closely
spaced eye movement positions to identical pixel loca-
tions.

Figure 3: Figure (3A) shows the piecwise triangular mapping
between measures and desired eye movements during calibra-
tion. Figure (3B) shows the affine mapping of equation 9 and
equation 10.

Figure 4: Figure (4) is a calibrated visual scan path for a test
subject measured when viewing figure (1).
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4. Relating Scan Path Statistics to the Cluster

Stability

Every pixel or object in the test image of figure (1)
is mapped to a cluster by the SSC algorithm and so
every calibrated and binned movement of visual scan
path can be mapped to a corresponding cluster. This
process creates a sequence of symbols that represent
eye movements in terms of cluster labels. The four
clusters (excluding the background) of figure (1) were
labelled by A, B, C, D, with the background clus-
ter labelled as E. The visual scan path is therefore
mapped to an output string with these labels. The
first step in relating scan path statistics to the SSC
algorithm is to compare the label distribution of the
output string to the relative stability of the clusters.
As was discussed in section 1 visual information is su-
pressed during saccadic motion. Examining the scan
path data indicates that a reasonable assumption is
that movements through the background are synoni-
mous to the saccadic motion and can be removed from
the analysis. As such the background label E can be
removed from any output string defining a visual scan
path. The distribution of the labeled states with the
background removed provides a relative measure the
duration of the visual fixations for each cluster and
this measure can be compared to the relative measure
of cluster stability produced by the SSC algorithm.

5. Conclusion and Future Work

Given a visual scan path output string the a his-
togram of the labels is compared to the relative stabil-
ity of the clusters for the image in figure (1). Figure
(5A) shows a sample histogram for a test subject, the
figure shows that the distribution of the labels in in-
creasing order is given by C > B > A > D which
matches the ordering of the relative stability given by
the SSC algorithm. By normalizing the histogram to
produce a probability the results of several test sub-
jects can be compared to the relative stability given by
the SSC algorithm as is shown in figure (5B). From the
experimental results it can be concluded that there is a
relationship between the relative stability determined
by the SSC algorithm and the duration of the visual
fixations. Thus the SSC algorithm can be used to pre-
dict duration of the visual fixations for a given test
image. There is a caveat to this result in that mea-
suring eye movements using an occulometer is prone
to error, and not all test subjects are able to produce
reliable eye movement data to to physical imperfec-
tions of the eye or problems with the ability to fixate
on small regions which is required in the calibration
phase. Thus more test subjects will be required before
a valid statistical analysis of the results can be ob-
tained, however the initial results are very promising

and warrent future research.

Figure 5: Figure (5A) shows the histogram of the visual fixa-
tion labels for a test subject viewing the image shown in figure
(1). Figure (5B) shows the the distribution of the visual fixa-
tions of the labels for a a group of test subjects viewing theimage
shown in figure (1), the large circles represent the mean value of
the duration whith the horizontal lines showing the standard de-
viation. Both figures indicate that the distribution of the visual
fixations matched the ordering of the relative stability given by
the SSC algorithm.
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