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Abstract—Random walk on a real social networking
service consisting of 2271 nodes is analyzed on the basis
of the statistical-thermodynamics formalism to find phase
transitions in network structure. Each phase can be related
to a characteristic local structure of the network such as a
cluster or a hub. For this purpose, the generalized transi-
tion matrix is introduced, whose largest eigenvalue yields
statistical structure functions. The weighted visiting fre-
quency related to the Gibbs probability measure, which is
useful for extracting characteristic local structures, is ob-
tained from the products of the right and left eigenvectors
corresponding to the largest eigenvalue. An algorithm to
extract the characteristic local structure of each phase is
also suggested on the basis of this weighted visiting fre-
quency.

1. Introduction

The statistical-thermodynamical formalism has been
successfully applied to temporal fluctuations caused by
chaotic or stochastic dynamics. In chaotic dynamical sys-
tems, local expansion rates which evaluate an orbital insta-
bility fluctuate largely in time, reflecting a complex struc-
ture in the phase space. Its average is called the Lya-
punov exponent, whose positive sign is a practical crite-
rion of chaos. There exist numerous investigations based
on large deviation statistics in which one considers distri-
butions of coarse-grained expansion rates (finite-time Lya-
punov exponent) in order to extract large deviations caused
by non-hyperbolicities or long correlations in the vicinity
of bifurcation points[1]. In general, statistical structure
functions consisting of weighted averages, variances, and
these partition functions as well as fluctuation spectra of
coarse-grained dynamic variables can be obtained by pro-
cessing the time series numerically. In some cases, we can
obtain these structure functions from matrix calculations.
We herein try to apply to network analyses an approach
based on an weighted visiting frequency corresponding to
the Gibbs probability measure and large deviation statistics
in the research field of chaotic dynamical systems. Along
this line, graphs and networks can be related to chaotic
dynamics[2].

In theq-phase transitions of the chaotic dynamics at the
band crisis or the band merging, an chaotic attractor col-

lides with another attractor or repeller[3]. One of our moti-
vations is to establish an analogy between the characteristic
local structure of the graph and the former attractor or re-
peller of the whole attractor at the band crisis.

2. Statistical-thermodynamics formalism for temporal
fluctuations

For stationary discrete-time signals ˜u j ( j = 1,2, · · ·),
we consider the following local average overn steps
ūn =

1
n

∑n
j=1 ũ j . For n → ∞, ūn coincides with the long-

time average⟨u⟩. For a large but finiten, ūn fluctuates and
distributes. Let the distribution function bePn(u). Even for
random or chaotic time series, there exists a characteristic
time scalenc of correlation decay. Forn ≫ nc, the
following scaling holds:Pn(u) ∝ exp(−nS(u)), whereS(u)
is called fluctuation spectrum or rate function. Note that
the following limit holds:P∞(u) = δ(u− ū∞), ū∞ = ⟨u⟩ .
For a real parameterq, we define the following generating
function Mq(T): Mq(n) ≡ ⟨eqnūn

⟩
=
∫ ∞
−∞ Pn(u)eqnudu. For

n≫ nc, the following scaling holds:Mq(n) ∝ exp
(
nϕ(q)

)
,

where the characteristic functionϕ(q) is introduced in the
limit of n→ ∞. Thus, we haveMq(n) ∝

∫ ∞
−∞ e−[S(u)−qu]ndu

for largen. Assuming the concavity ofS(u) (S′′(u) > 0),
we can apply the saddle-point method to the integral and
we have the following Legendre transformation between
ϕ(q) and S(u): ϕ(q) = −minu′ [S(u′) − qu′] for large n.
Since the integrandS(u′)−qu′ takes minimum atu′ = u(q),
we havedS(u(q))

du(q) = ϕ(q) = −S(u(q)) + qu(q), whereϕ(q) is
convex downward andϕ(q)/q is monotonically increasing
with respect toq. Differentiatingϕ(q) with respect toq,

we haveu(q) = dϕ(q)
dq = limn→∞

⟨ūneqnūn⟩
Mq(n) = limn→∞ ⟨ūn; q⟩n ,

where the weighted average⟨...; q⟩n =
⟨
...eqnūn

⟩
/Mq(n)

is defined. Using this weighted average, we can ex-
tract larger (smaller) local averages than the long-
time average forq > 0 (q < 0) from among
various local averages. The long-time average
corresponds toq = 0. The weighted variance
χ(q) = du(q)

dq = limn→∞ n
⟨
(ūn − u(q))2; q

⟩
n
= 1

S′′(u(q))
corresponds to a fluctuation intensity as a function ofq.
The functionsϕ(q), u(q), χ(q) andS(u) are called statistical
structure functions characterizing temporal fluctuations.
The relationship among the parameterq and the statistical
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structure functions is similar to that among several quanti-
ties and the thermodynamics functions of the ferromagnet
below the Curie temperature where the magnet field, the
magnetizaton and the susceptibility correspod respectively
to q, u(q), and χ(q). One may also relate the inverse
temperature toq. The name, “statistical-thermodynamics
formalism”, comes from this analogy. Let us consider
the discrete-timeN-state Markovian process given by the
evolution equationP(n + 1) = HP(n) (n = 0, 1,2, · · ·),
where P(n) = (P1(n),P2(n), · · · ,PN(n))T consists of the
probabilityP j(n) that the system is in thej-th state at time
n, and H denotes transition matrix withjk elementH jk

being equal to the transition probability from thek-th state
to the j-th one. The transition probability satisfies the nor-
malization

∑N
j=1 H jk = 1. Let us consider the time series of

ũn, which takes the valuea j if the system is in thej-th state.
The generating functionMq(n) for the time series{ũn} is
given by Mq(n) =

⟨
exp
(
q
∑n−1

s=0 ũs

)⟩
=
∑N

j=1

(
Hn

qP∗
)

j
,

where P∗ is the steady probability density, and
is commercially valuable information in the
field of the World Wide Web called PageRank
(http://ilpubs.stanford.edu:8090/422/1/
1999-66.pdf). The generalized transition matrixHq

is defined byHq = H eqU, whereU is the diagonal matrix
with the jk element being equal toU jk = a jδ jk. For large
n, we haveMq(n) ∝ exp(nϕ(q)). Thus, we find that the
characteristic functionϕ(q) is identical to the logarithm
of the largest eigenvalueνq of Hq asϕ(q) = logνq. Note
thatν0 = 1 holds. The other statistical structure functions
can be obtained analytically from the relations described
above.

3. Application to an SNS network

We apply our analysis based on the statistical-
thermodynamics formalism to a real social networking ser-
vice (SNS). Our analysis object is in such a way con-
structed that we choose all users within second-neighbor
distance from a specific user belonging to the largest SNS
in Japan calledmixi (http://mixi.jp/). Let us regard
user as node,my-mixi relation indicating a friendship on
the SNS as undirected link, so that we have an undi-
rected graph with 2271 nodes, among which 11559 undi-
rected links exist as shown in Fig. 1 by use of the program
called Pajek for analysis and visualization of large net-
works (http://pajek.imfm.si/). Themixi users spec-
ify somekeywordssuch asfashion, cookingas their mat-
ters of concern. For a fixedkeyword, we assign the node-
dependent quantitya = 1, when the node (user) chooses
the keyword, anda = 0 otherwise. Random walk on the
object graph yields random sequence of 0 and 1 denoted
by {ũ}. The statistical structure functions are obtained from
the largest eigenvalue of the 2271× 2271 matrixHq. There
are some remarkable non-analytical behaviors, which im-
plies the presence ofq-phase transitions. Stepwise discon-
tinuous leaps are observed in the weighted averageu(q) of

the analysis object, which separate fivephases. Four emi-
nent sharp peaks are also observed in theq-dependence of
the weighted varianceχ(q) at theq-phase transition points.
The whole graph is not uniform and separated into some
local structure which can be characterized by the same
fluctuation property of the node-dependent quantitya, so
that such a local structure appears as aphasein the q-
phase transition. Although the link structure of the graph is
identical, different choice of the node-dependent quantity
yields differentq-phase transitions, which implies that our
method characterizes simultaneously both the link structure
and the distribution of the node-dependent quantity. The
weighted visiting frequencyvi(q)hi(q) (i = 1,2, · · · ,2271)
given by the left and right eigenvector corresponding to the
largest eigenvalueνq of the generalized transition matrix
Hq also reflects the phase. The top hundred nodes of the
weighted visiting frequencyvi(q)hi(q) differ from phase to
phase as shown Fig. 2. We extract community structure
as a phase of the statistical structure functions. We here-
after regulate ourselves to the case ofcooking. We find
five phases in Fig. 2, whose transition points are given by
−∞ = q0 < q1 < q2 < q3 < q4 < q5 = ∞.We call the phase
corresponding toq ∈ [qα−1,qα) (α = 1,2,3,4, 5) phaseα,
which is extracted by the following procedures: (1) [Cal-
culate the phase-averaged weighted visiting frequencies of
each node ¯p(i)

α ≡ 1
qα−qα−1

∫ qα
qα−1

vi(q)hi(q)dq, whereq0 = −∞
andq5 = ∞ are replaced by suitable finite cutoff values in
numerical estimations.] (2) [Sort ¯p(i)

α in descending order
and choosem nodes, such thatm is the minimum number
satisfying

∑
m p̄(im)
α ≥ P, whereP (0 ≤ P ≤ 1) is a ratio

of the chosen nodes to the total nodes contained in phaseα
called contribution rate in the following.] WhenP is equal
to unity, all nodes are chosen. Note that an identical node
may have a large value of the weighted visiting frequency
and may be chosen in different phases according to our pro-
cedures. Although many known methods divide a network
into subnetworks, our method does not make a complete
division. In the case of the network of Fig. 1, community
structure as a phase is obtained forP = 0.7 and shown in
Fig. 3 (a)-(e). Whenq is nearly equal to zero, the node-
dependent quantities consist of zeros and ones, and the net-
works between such nodes have a few hubs and many satel-
lites, as shown in Fig. 3 (b) and (c). For large (small)q, all
the node-dependent quantities are equal to one (zero), and
the networks are tightly clustered as shown in Fig. 3 (a),
(d) and (e). We observed in Fig. 2 eminent large values of
vi(q)hi(q) of one node for the phase−0.5 . q . 0, one for
0 . q . 0.8 and two forq & 2.2, which might be regarded
ashubsyielding the corresponding value of the local av-
erage of the node-dependent quantity ˜u or equivalently of
the weighted averageu(q). It should be noted that we have
q-phase transition points atq = 0 in many cases, so that the
PageRank, the unweighted visiting frequencyvi(0)hi(0), is
a special case in our formalism. The weighted visiting fre-
quenciesvi(q)hi(q) just before and after the transition point
q = 0 are quite different, as shown in Fig. 2.
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4. Level dynamics as a future problem

In a sense, the unweighted visiting frequencyvi(0)hi(0)
is degenerated. Regarding the standard and generalized
transition matricesH andHq as unperturbed and perturbed
Hamiltonian, respectively, we can break the degeneracy by
use of the perturbation. Such a quantum dynamics like
analog of our statistical thermodynamical formalism called
level dynamics is developed. Fujisaka and Yamada de-
rived a system of differential equations (equations of mo-
tion) for eigenvalues and eigenvectors ofHq, regardingq
as a virtual time[4]. For the initial conditions of eigen-
values and eigenvectors of the conventional transition ma-
trix or the Frobenius-Perron matrix atq = 0, eigenval-
ues and eigenvectors of the generalized transition matrix
or the Frobenius-Perron matrix are determined by solving
the above-mentioned equations of motion.

Even for a simple discrete-time two-state Markov chain,
the equations of motion turn out to be a system of strongly
nonlinear differential ones. For many states, it seems im-
possible to solve. In the case of numerical analyses, we
have to numerically solve an initial-value problem of a sys-
tem of N2 nonlinear differential equations, whereN de-
notes a number of states. It would be rather faster to solve
an eigenvalue problem of the generalized transition matrix
or Frobenius-Perron matrixHq than to solve the level dy-
namics.

At this moment, we find no advantage of level dynam-
ics approaches to large deviation statistics both analytically
and numerically. However, we are still interested in hidden
conserved quantities and other theoretical aspects. The re-
lationship between nearest-neighbor-spacing distributions
or other spectral statistics and level dynamics for stochas-
tic matrices is an interesting and open problem.
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Pajek

Figure 1: The analysis object constructed from a social net-
working service with 2271 nodes are drawn. Here thekey-
word is fixed tocooking. The node-dependent quantity 0
(1) is indicated by a white (black) circle.
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Figure 2: The weighted visiting frequenciesvi(q)hi(q) plot-
ted againstq for i = 1,2, · · · ,2271 in the case of the net-
work shown in Fig.1 The weighted visiting frequencies of
the identical node are connected with a line. In total 2271
lines are drawn. For a fixed value ofq, vi(q)hi(q) are nearly
equal to zero for most nodes, and only a few nodes have
finite values, which are distinguishable from the horizontal
axis (vi(q)hi(q) = 0). The node-dependent quantity 0 (1)
is indicated by a dashed (solid) line. Multiple nodes may
degenerate into a single line. Forq > 2.2, e. g., the lower
line corresponds to two nodes.
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Figure 3: (a)-(e) from top down. Community structure of
the network shown in Fig. 1 withP = 0.7. Each of the
five subnetworks is extracted as a phase according to our
procedures. The node-dependent quantity 0 (1) is indicated
by a white (black) circle.
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