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Abstract—Random walk on a real social networkinglides with another attractor or repeller[3]. One of our moti-
service consisting of 2271 nodes is analyzed on the basiations is to establish an analogy between the characteristic
of the statistical-thermodynamics formalism to find phaskcal structure of the graph and the former attractor or re-
transitions in network structure. Each phase can be relatpdller of the whole attractor at the band crisis.
to a characteristic local structure of the network such as a
cluster or a hub. For this purpose, the generalized transi'—
tion matrix is introduced, whose largest eigenvalue yields’
statistical structure functions. The weighted visiting fre-
quency related to the Gibbs probability measure, which is gq, stationary discrete-time signals (j = 1.2.---),
useful for extracting characteristic local structures, is obze consider the following local average over steps
tained from.the products of the_ right and left elgen\./ectorgn — %Z?:l fi;. Forn — oo, Oy coincides with the long-
corresponding to the largest eigenvalue. An algorithm tgme averageuy. For a large but finite, Gy fluctuates and
extract the characteristic local structure of each phase dgstriputes. Let the distribution function 8(u). Even for
also suggested on the basis of this weighted visiting fréangom or chaotic time series, there exists a characteristic

Statistical-thermodynamics formalism for temporal
fluctuations

quency. time scalen; of correlation decay. Fon > n, the
following scaling holdsP,(u) < exp(nS(u)), whereS(u)
1. Introduction is called fluctuation spectrum or rate function. Note that

o _ _ the following limit holds: P, (U) = 6(U — Uy), Uw = (U).
The S'[atIStlca|-thermodynamlca| formalism has beepor a real paramete{" we define the fo”owing genera‘[ing

successfully applied to temporal fluctuations caused Bynction Mq(T): Mq(n) = (e™n) = f"" Pn(U)e"du. For

foma, Iocal expansion fales which evalLate an orbial et} 1 the ollowing scaling holdshia() = exp(n(c)).
L P S : Where the characteristic functiafq) is introduced in the
bility fluctuate largely in time, reflecting a complex struc-

. : limit of n — co. Thus, we havéMy(n) o« [ eTlS@-aingy
ture in the phase space. Its average is called the Ly 5t largen. Assuming the concavity ch(_uof (S"(u) > 0)

punov exponent, whose positive sign is a practical crltev-vCF can apply the saddle-point method to the integral and

ggr}a?f gh dios.ét.-(l; :esrteatg;l_sctsql;mehr% ﬁso'gzeféfggg?ss (;).Esitsr(.@_ve have the following Legendre transformation between
b t'ongs of c\c/>|ar|se— ra'r:etlzi e I avr\1,s'lon rates (f'n'tle-t'meIL I—(Q) and S(u): ¢(q = —miny[S(u) — qu] for large n.
parllov exponent) ig orlder to)g:(traclt large devlialtionls caug jnce thedbjntegranﬂ(u’)—qu takes minimum atr = u(a),
by non-hyperbolicities or long correlations in the vicinitycoencs)\(/edo\(,%én?\zva:rfg]r)] ¢:( )_/S(lijs(q%)o;c?tb(lj(ﬂi)(’;:\\lllheigec(f;(etgsi;
of bifurcation points[1]. In general, statistical structure 979 y g

. - . . with respect tog. Differentiatin with respect tog,
functions consisting of weighted averages, variances, and P o <gn%q¢23(nc>l) P o

these partition functions as well as fluctuation spectra ¢¥€ haveu(a) = dﬁ_? = liMneo S = IMnoe (Un; Qs
coarse-grained dynamic variables can be obtained by prehere the weighted average.;qy, = (..e"™)/Mqy(n)
cessing the time series numerically. In some cases, we cigndefined.  Using this weighted average, we can ex-
obtain these structure functions from matrix calculationdract larger (smaller) local averages than the long-
We herein try to apply to network analyses an approadime average forq > 0 (@ < 0) from among
based on an weighted visiting frequency corresponding t@rious local averages. The long-time average
the Gibbs probability measure and large deviation statistie®rresponds toq = 0. The weighted variance
in the research field of chaotic dynamical systems. Along(@) = %2 = limuon{( - u@)%0) = sig
this line, graphs and networks can be related to chaottorresponds to a fluctuation intensity as a functiorgof
dynamics|[2]. The functionsp(q), u(g), x(g) andS(u) are called statistical

In the g-phase transitions of the chaotic dynamics at thetructure functions characterizing temporal fluctuations.
band crisis or the band merging, an chaotic attractor colFhe relationship among the paramegeand the statistical

- 140 -



structure functions is similar to that among several quantthe analysis object, which separate fpgases Four emi-

ties and the thermodynamics functions of the ferromagnegent sharp peaks are also observed incHuependence of
below the Curie temperature where the magnet field, thhe weighted variancg(q) at theg-phase transition points.
magnetizaton and the susceptibility correspod respectiveljhe whole graph is not uniform and separated into some
to g, u(g), and xy(g). One may also relate the inverselocal structure which can be characterized by the same
temperature t@. The name, “statistical-thermodynamicsfluctuation property of the node-dependent quarditgo
formalism”, comes from this analogy. Let us considethat such a local structure appears aphasein the g-

the discrete-timeéN-state Markovian process given by thephase transition. Although the link structure of the graph is
evolution equatiorP(n + 1) = HP(n) (n = 0,1,2,---), identical, diterent choice of the node-dependent quantity
where P(n) = (Py(n), P2(n),---,Pn(n))" consists of the yields diferentg-phase transitions, which implies that our
probability P;(n) that the system is in thgth state at time method characterizes simultaneously both the link structure
n, andH denotes transition matrix withjk elementHy  and the distribution of the node-dependent quantity. The
being equal to the transition probability from tkeh state weighted visiting frequency;(Q)hi(q) (i = 1,2,---,2271)

to the j-th one. The transition probability satisfies the norgiven by the left and right eigenvector corresponding to the
maIizationZﬂ-“:l Hjx = 1. Let us consider the time series oflargest eigenvalue, of the generalized transition matrix
Gin, which takes the valua if the system is in thg-th state. H, also reflects the phase. The top hundred nodes of the
The generating functioMq(n) for the time serieglin} is  weighted visiting frequency;(g)hi(q) differ from phase to
given by My(n) = <exp(q§]”;3 a5)> = Z]_N:l(ng*)', phase as shown Fig. 2 _ We extract community structure
where P, is the steady probability density, Jandas a phase of the statistical structure fun.ct|ons. We here-
is commercially valuable information in the a}fter regulat.e ogrselves to the ca's.ecobkl'ng We f[nd
field of the World Wide Web called PageRankf'Ve phases in Fig. 2, whose transition points are given by
(http://ilpubs.stanford.edu:8090,/422/1/ —00 = Qo < Gt < 2 < G3 < G < Gs = co. We call the phase
1999-66.pdf). The generalized transition matrid, corresponding t@ € [0,-1,00) (@ = 1,2,3,4,5) phase,

is defined byHy = H e, whereU is the diagonal matrix which is extracted by the foIIO\_/vmg pro.c.e.dures: () [Qal-
with the jk element being equal 10 = a;6;. For large culate the p(ir;ase—a;/eragq?d weighted visiting frequencies of
n, we haveMq(n) o« exp(ng(q)). Thus, we find that the each nodep;” = g—— fql Vi(q)_h‘ (Q)dq’ yvhereqo =
characteristic functions(q) is identical to the logarithm a@ndgs = co are replaced by suitable finite ciitvalues in

of the largest eigenvalue, of Hy as¢(q) = logv,. Note numerical estimations.] (2) [So_pﬁ,'hn dgs_cending order
thatvo = 1 holds. The other statistical structure functiongénd choosen nodes, such thahis the minimum number

can be obtained analytically from the relations describeBRtisfyingZm pS™ > P, whereP (0 < P < 1) is a ratio
above. of the chosen nodes to the total nodes contained in phase

called contribution rate in the following.] Whemis equal
to unity, all nodes are chosen. Note that an identical node
may have a large value of the weighted visiting frequency

We apply our analysis based on the statistica/@nd may be chosen infiierent phases according to our pro-
thermodynamics formalism to a real social networking sefeedures. Although many known methods divide a network
vice (SNS). Our analysis object is in such a way COniﬂ_tq _subnetvvorks, our method does not_ make a complete
structed that we choose all users within second-neighb@}vision. In the case of the network of Fig. 1, community
distance from a specific user belonging to the largest SN&ructure as a phase is obtained For= 0.7 and shown in
in Japan callednixi (http://mixi.jp/). Let us regard Fig. 3 (8)-(e). Whery is nearly equal to zero, the node-
user as nodeqy-mixirelation indicating a friendship on dependent quantities consist of zeros and ones, and the net-
the SNS as undirected link, so that we have an undWworks between such nodes have a few hubs and many satel-
rected graph with 2271 nodes, among which 11559 undifes, as shown in Fig. 3 (b) and (c). For large (smalill
rected links exist as shown in Fig. 1 by use of the prograri€ node-dependent quantities are equal to one (zero), and
called Pajek for analysis and visualization of large net-the networks are tightly clustered as shown in Fig. 3 (a),
works http://pajek.imfm.si/). Themixi users spec- (d) and (e). We observed in Fig. 2 eminent large values of
ify somekeywordssuch agashion cookingas their mat- Vi(@hi(q) of one node for the phased.5 < q < 0, one for
ters of concern. For a fixekeyword we assign the node- 0 < d s 0.8 and two forg > 2.2, which might be regarded
dependent quantitg = 1, when the node (user) chooses?S hubsyielding the corresponding value of the local av-
the keyword anda = 0 otherwise. Random walk on the €rage of the node-dependent quantitgrequivalently of
object graph yields random sequence of 0 and 1 denotéf¢ Weighted averagg(q). It should be noted that we have
by {{i}. The statistical structure functions are obtained fror-Phase transition points gt= 0 in many cases, so that the
the largest eigenvalue of the 2272271 matrixH,. There PageRank, the unweighted visiting frequera@)hi(0), is
are some remarkable non-analytical behaviors, which inft special case in our formalism. The weighted visiting fre-
plies the presence ofphase transitions. Stepwise disconduencies/i(a)hi(q) just before and after the transition point
tinuous leaps are observed in the weighted aveuggeof 9 = O are quite dterent, as shown in Fig. 2.

3. Application to an SNS network
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4. Level dynamics as a future problem

In a sense, the unweighted visiting frequerg)h; (0) gf‘
is degenerated. Regarding the standard and generalized ﬁ O
transition matrice$i andHq as unperturbed and perturbed o Ao B L &
Hamiltonian, respectively, we can break the degeneracy by 49 g & t -

use of the perturbation. Such a quantum dynamics like
analog of our statistical thermodynamical formalism called
level dynamics is developed. Fujisaka and Yamada de-
rived a system of diierential equations (equations of mo-
tion) for eigenvalues and eigenvectorsH§, regardingg

as a virtual time[4]. For the initial conditions of eigen-
values and eigenvectors of the conventional transition ma-
trix or the Frobenius-Perron matrix at = 0, eigenval-
ues and eigenvectors of the generalized transition matrix
or the Frobenius-Perron matrix are determined by solving
the above-mentioned equations of motion.

Even for a simple discrete-time two-state Markov chain,
the equations of motion turn out to be a system of strongly
nonlinear diferential ones. For many states, it seems im-
possible to solve. In the case of numerical analyses, we )
have to numerically solve an initial-value problem of a sys-
tem of N2 nonlinear diferential equations, wherd de-  Figure 1: The analysis object constructed from a social net-
notes a number of states. It would be rather faster to solveorking service with 2271 nodes are drawn. Herekég
an eigenvalue problem of the generalized transition matrixord is fixed tocooking The node-dependent quantity O
or Frobenius-Perron matridy than to solve the level dy- (1) is indicated by a white (black) circle.
namics.

At this moment, we find no advantage of level dynam-
ics approaches to large deviation statistics both analytically
and numerically. However, we are still interested in hidden 05
conserved quantities and other theoretical aspects. The re-©
lationship between nearest-neighbor-spacing distributions @
or other spectral statistics and level dynamics for stochas-
tic matrices is an interesting and open problem.
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Figure 3: (a)-(e) from top down. Community structure of
the network shown in Fig. 1 witl® = 0.7. Each of the
five subnetworks is extracted as a phase according to our
procedures. The node-dependent quantity O (1) is indicated
by a white (black) circle.
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