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Abstract– The presence of chaos in fractional-order 

systems without equilibrium points represents a recent 

challenging topic in nonlinear dynamics. On the other 

hand, to the best of authors’ knowledge, the presence of 

hyperchaos has not been found in these systems. This 

paper bridges the gap by introducing a new example of 

fractional hyperchaotic system without equilibrium points. 

The conducted analysis has shown that hyperchaos exists 

in the proposed system when its order is as low as 3.84. 

An interesting application of hyperchaotic synchronization 

to the considered fractional system is provided.  
 

1. Introduction 

During the last decades, researchers have found out 

that problems encountered in viscoelasticity, 

electromagnetic waves, quantitative finance, electrical 

circuit theory and control systems can be more accurately 

described using fractional calculus [1˗3]. More recently, 

great attention has been focused on chaotic (only one 

positive Lyapunov exponent) and hyperchaotic (two or 

more positive Lyapunov exponent) behaviors of nonlinear 

fractional-order systems [4˗11]. Some examples include 

the fractional chaotic Chua’s circuit [4˗5], the fractional 

chaotic Lorenz system [6], the fractional chaotic Chen 

system [7˗8], the fractional hyperchaotic Rössler system 

[9] and the fractional systems generating multi-scroll and 

multi-wing attractors  [10˗11].  Note that all these 

fractional systems are characterized by one or more 

equilibrium points. However, a very challenging topic is 

the study of fractional-order systems without equilibrium 

points. Namely, the presence of chaos in nonlinear 

systems without equilibria is very surprising since they 

can have neither homoclinic nor heteroclinic orbits [12], 

and thus the Shilnikov theorem cannot be applied [13]. In 

this regard, referring to the presence of chaos in fractional 

systems with no equilibria, only very few papers have 

been published [14˗16]. On the other hand, referring to 

the presence of hyperchaos in fractional systems with no 

equilibria, to the best of our knowledge, no paper has 

been published in the literature so far. 

Based on these considerations, this paper aims to bridge 

the gap by introducing a new example of fractional 

hyperchaotic system with no equilibria. The conducted 

analysis has shown that the proposed system exhibits 

hyperchaotic attractors when the system order is as low 

as 3.84. An application of hyperchaotic synchronization to 

the considered fractional system is also illustrated.  

The paper is organized as follows. In Section 2 the 

fundamentals of fractional calculus and the predictor-

corrector method are reported. In Section 3 the considered 

fractional-order system with no equilibria is studied. An 

attractor is found when the order of the derivative is q = 

0.96 and its hyperchaotic nature is confirmed by the 

application of a recent numerical method [17]. Finally, in 

Section 4 an example of synchronization involving the 

considered hyperchaotic fractional system is described. 
 

2. Theoretical background 

The Riemann-Liouville fractional integral operator 
0

q
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order q
+
 is defined on the Lebesque space L1[t0, t1] by 
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where (q) is the Gamma function [18]. In this manuscript 

the Caputo differential operator 
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where 1  and m q m m N    (i.e., ceil( )m q ) [19].  

Based on the Caputo’s definition (2), the following form 

of fractional-order differential equation is considered: 

0, 0( ) ( ( )),     (0) ,     (0,1)q

tD x t f x t x x q    . (3) 

It has been demonstrated that the initial value problem (3) 

is equivalent to a Volterra integral equation [20], 
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Now, the equation (4) is solved by applying the predictor-

corrector iterative algorithm, which belongs to the 

Adams–Bashforth–Moulton (ABM) schemes. By taking 

0 t T   and by setting h T N  ( N  ), nt nh , n = 

0,1,..., N, equation (4) can be discretized as [20]: 
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Equation (5) can be rewritten as [20]: 
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The solution via the ABM method is carried out by first 

predicting 
1( )nx t 

 using the explicit Adams-Bashforth 

formula (obtaining the prediction
1

ˆ( )nx t 
) and then 

correcting (obtaining the final value 
1( )nx t 

) [20].  
 

3. A new hyperchaotic fractional system with no 

equilibria 

Very recently, in [21] the first example of a 4-D integer-

order hyperchaotic system with no equilibria was given. 

The system proposed in [21] possesses no characteristics 

such as pitchfork bifurcation, Hopf bifurcation, and so on. 

The presence of hyperchaos in such system is very 

surprising since it can have neither homoclinic nor 

heteroclinic orbits [12], and thus the Shilnikov theorem 

[13] cannot be used to verify the chaos.  

Referring to fractional-order hyperchaotic systems 

without equilibria, to the best of our knowledge, no paper 

has been published in the literature so far. Based on this 

consideration, this study bridges the gap by introducing 

the first example of fractional hyperchaos. Specifically, 

the equations of the proposed system are: 
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where qD  denotes the Caputo fractional operator defined 

in (2) with initial time t0 = 0. It can be readily verified that 

the proposed system (8) has no equilibrium points. By 

applying the predictor-corrector algorithm described in 

Section 2, the solution of the fractional system (8) can be 

written as: 
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in which the predicted variables are: 
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and 
, 1j n 

 is given by (6). By considering the parameter 

values a = 8, b = −2.5 and c = −30, the discretized 

equations (9)-(10) are calculated for several values of 

order 0 1q  . A remarkable finding of this paper is that 

hyperchaos exists in the proposed fractional system with 

no equilibria for the value q = 0.96. The phase portraits of 

the hyperchaotic attractor are shown in Fig.1. 
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Fig. 1: Projections of the hyperchaotic attractor of the fractional 

system without equilibria (8) with  q = 0.96: (a) (x,w)-plane, (b) (y,w)-

plane, (c) (z,w)-plane, (d) (y,z)-plane. 

 

The hyperchaotic nature of the attractor in Fig.1 is 

confirmed using the technique based on the recent paper 

[17]. Note that, while other numerical methods (like the 

Wolf algorithm) only give an estimation of the largest 

Lyapunov exponents, the algorithm in [17] is the only one 

able to provide the entire spectrum of Lyapunov 

exponents in fractional-order systems. The obtained 

spectrum (1 = 0.91, 2 = 0.19, 3 = 0, 4 = -1.37) 

includes two positive values, confirming the hyperchaotic 

nature of the considered attractor. 

 

4. Application to hyperchaos synchronization 

Chaos synchronization between two dynamical systems 

(called drive and response system, respectively) consists 
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in making the state variables of the response system 

synchronized in time with the drive system states [22]. A 

technique to obtain synchronization is the observer-based 

method, where the response system is designed to behave 

as an observer of the drive system [23]. Herein, an 

example of observer-based synchronization applied to the 

hyperchaotic fractional system (8) with q = 0.96 and a = 

8, b = −2.5 and c = −30 is proposed. To this purpose, the 

drive system can be written in the form [22]˗[23]: 
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whereas the synchronizing vector signal s(t) is: 
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s K , (12) 

where 3 4RK is a gain matrix to be determined [23]. By 

applying the synchronization method proposed in [22˗23], 

the response system is 
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where ˆ( )ts  is the observer prediction of the synchronizing 

signal s(t), that is 
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s K . (14) 

By defining the synchronization error between drive and 

response systems as 
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from equations (11)-(14) it can be shown that the 

following linear fractional-order error system is obtained: 
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It can be readily verified that the (4×12)-controllability 

matrix derived from (16) is full rank. Therefore, according 

to Theorem 1 stated in [24], the eigenvalues of the error 

system (16) can be assigned anywhere in the stability 

region defined by the following inequality: 
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Note that the complex region of asymptotic stability, 

defined by (17) for q = 0.96, is larger than the region 

corresponding to the integer-order case (the well-known 

open left half plane) since it includes a part of the right 

half plane shaped as a complementary wedge (Fig.2). This 

property of fractional systems can be exploited in the 

considered hyperchaotic synchronization. To this purpose,  

the eigenvalues are selected as  0.2 9.5, 0.5 10.04i i  , 

i.e. they have positive real parts but lie in the stability 

region depicted in Fig.2. 
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Fig. 2:  The stability region of system (16) under condition (17) for q = 

0.96 is in grey color. 

 

Based on this choice, the following matrix is obtained  
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which gives the linear error system 
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with eigenvalues given by  0.2 9.5, 0.5 10.04i i  . From 

Figure 3 it can be observed that the fractional error system 
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(19) is asymptotically stabilized at the origin (see 

inequality (17)), even though all the eigenvalues have 

positive real parts. 
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Fig. 3:  Time behavior of the error system (19) for 0.96q  . 

 

Note that the plots in Fig.3 are in agreement with the 

theoretical results expressed by the condition (17) and 

proved in [24]. This indicates that the observer-based 

method enables hyperchaotic synchronization between the 

fractional drive system (11) and the fractional response 

system (13) to be effectively achieved. 
 

5. Conclusions 

A new exciting phenomenon and unexplored field of 

research is represented by the presence of hyperchaos in 

fractional systems with no equilibria. This paper has 

investigated the topic by introducing a new example of 

fractional hyperchaotic system without equilibria. The 

approach has exploited the predictor-corrector algorithm 

to find the hyperchaotic attractor when the order of the 

derivative is q = 0.96. An application of the observer-

based synchronization to the proposed hyperchaotic 

fractional system has been illustrated in detail. 
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