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Abstract—In recent years,the popularity of cellular mo- In this paper, an expanded Maximum Neural Network
bile communication systems increases steady. Howev€kINN) algorithm, proposed by Ikenaga and colleagues[2],
the usable frequency spectrum or channels for the Cellis verified, and for improvement of the solution accuracy,
lar Radio Networks(CRNSs) are limited. Thus, algorithmgarge hill-climbing is suggested. The addition of largé-hil
for an dhicient utilization of channels: the Channel As-climing causes slower processing speeds than the origi-
signment Problem(CAP) have become important. In thisal one. Thus, speed-up methods using multi-thread are
paper, we propose an improved Neural Network Algorithnproposed. We verify performance of proposed algorithm
(NNA) with parallelism to improve solution accuracy andthrough simulations using some benchmarks and our pro-
speed-up processing for the static CAP in CRNs. Our prgosed algorithm can search better solutions and obtains
posed algorithm achieves the improved solution accuradsgster processing speeds than the existing one.
because of large hill-climbing. In addition, parallel Pro-5  channel Assignment Problem

cessing using multi-thread can achieve faster processing. ) .
: : : . The Channel Assignment Problem(CAP) consists of a
We verify performance through simulations using bench- ) .
verty p ugh simuiat using umber of users and Base Transceiver Stations(BTSs). In

mark problems and our proposed algorithm can search bet- .
ter solutions and obtains faster processing speeds than {fis paper, a BTS IS assumed to havg a hexagonal-shaped
existing one. management_domaln (cell) as shown in Flgure 1. If a user
associated with a cell requests a connection, the BTS as-
1. Introduction signs a channel to accommodate it. Then, tffeative
Recently, the popularity of cellular mobile communica-Cha.”nel assignment is required for each cell on the cellular
tion systems increases steady. However, the usable ff@dio network as the CAP.

guency spectrum or channels for the Cellular Radio Net-
works(CRNs) are limited. Thus, algorithms for affie el

cient utilization of channels:the Channel Assignment Prob cﬁiﬁﬁa gee
lem(CAP) have become increasingly important[1]-[4],[6]. requiest BTS
CRNs consist of a number of fixed Base Transceiver Sta- eeoe
tions (BTSs) and a larger number of connection requests

from cellular phone users. These users can receive cellular Figure 1: Cellular radio network

phone service due to the channel assignments allocated byy. 4ssume cells andMi channels in the CRNs. For a

a BTS. The CAP entails allocating channels to cells in th§eyan vectob (the channel requirements for cells) and a
CRN such that thefeective assignment of required chan-y .\ compatibility matrixC, a channel assignment min-
nel numbers minimizes mutual interference while satisfyjy;,ing total interference is required. The interferenee b
Ing electromagnetm compatlblllty const@nts as possibl yeen cells is represented by interference mdria three

We c_onsujer the followmg three constraints [6]. (1)FOr &jimensionaN x N x M matrix. An element  in E indi-
certain pair of radio cells, the same channel can notbe usggeq jnterference of any channels as having a distance of
simultaneously. (2)Any pair of channels assigned to a cgll ¢.o 1, channej assigned to ceil. The demand vectdd

should have a certain distance between them. (3)The adja;sN elements and an elementindicates the number of
cent channels in the frequency domain can not be assignr%auired channels form call

to adjacent cells simultaneously. In this paper, the interference matixassumes that the

The CAP can be reduced from the graph-coloring proksompatibility matrixC givese as defined by Smith[1].
lem which is NP-complete [7], and its computation time

grows exponentially for a large-scale network. Thus, an ex- B B 0: (f aj<Kk

act search for the optimal solution is impracticable. Farth ~ ®i0 = Cij » @ik = { ai—-k: (if ¢j>k @
reason, many researchers have investigated approximate al

gorithms for the CAP. Algorithms using Neural Networkwherec;; (i=1,---, N, j=1,--, N) is a element oC and is
Algorithms(NNAs) have been proposed[1]-[4],[6]. given by Gamst's compatibility matrix of the CAP.
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Figure 2 shows an example of the CAP with four cellswhereU;_ is thed;-th largest value itJ;y,- - -,Uju, If more
Figure 2(a) shows compatibility matrX and demand vec- than d; neurons satisfyJi; > Uj_y, the neurons which
tor D. Figure 2(b) illustrates interference matkx Figure output O previously are selected preferentially because th
2(c) shows the corresponding networks topology of masearch space is expanded by the changes in the assignment
trix C. The solution for the minimum number of channelgesult and more too, neurons which output 1 are determined
needed for no interference assignment in this example is tAndomly from acceptable neurons. By employing the ex-
because 11 channels would be needed for cell 4 as cangmwnded maximum neuron, the energy function has only one
seen in Figure 2. Figure 2(d) shows an optimal solution iterm which represents the total interference.
this example, where the total interference is 1.

N M N M
5 4 0 0 1 A
4 0 0 1 1 E:EZZZ Z @iplj-alVpaVij )
C=l45 01 D=|1 i=1 171 p=1 4=1(i.D%(pa)
01 2 5 3 . . .
(a)Compatibility matrix and demand vector where (i.j)}*(p,q) represents#j when i=p.
The motion equation is defined as following.
4 3 00 3 2 00
3 4 00 2 3 0 0
@1=lo0 0 4 1 Qi2=[0 0 3 o] du;; 9E N W
00 1 4 000 3 o ‘Alz Z €pii-aVpq
(b)Interference matrix ! p=1 Q=1,(|,J)f(p,q)
celll cell2 (if(t mod T,) > w)
N M
—Azz Z €plj-aVpaVij
cell3 celld p=1g=1,(i.j)#(p.q)
(c) The corresponding network topology (if(t mod T,) < w)
channel N M
Vig 2 3 45 6 7 8 9 10 +B.h(z Z Qp“—q\quvij)
1 ﬂ p=1 ¢=1(i.)#(P.0)
3 2 H +C(1-Vij) (4)
'l - where the termA; is obtained by dferentiating partially
(d) Example of a channel assignment result the energy function with respect ;. In the case of
Figure 2: Example of CAP (t mod T,) > w), the termd; is used, and in the other

3. Neural network algorithm and I kenaga’'salgorithm ~ case the termf\; is used. The omega function ejects so-

A Neural Network Algorithm(NNA) is a heuristic algo- lution from the local minimum by encouraging competi-
rithm and a mathematical model based on a neural ndton between neurons. The teris a hill-climbing term
work. A neural network model is decided by ways of agWhich serves escaping from the local minimum, by assign-
gregates of neurons. A neuron has multi inputs and origg channels have no interference from surrounding cells.
output which collects other neurons outputs as input thefhe function h(x) is 1 ifx < 0, in other cases h(xp. The
calculates own state and decides the output. In this papt&'mMC is shaking term. By deterring immobilization of the
the Hopfield neural network [5] as the neural network anghannel assigpment, the shaking term encourage escaping
an extended maximum neuron as a neuron model [2] af@m local minimum.
employed. To solve problems using NNA, problems need
to be represented by neurons, an energy function that is a

non-negative function and intends states of whole neurogs. .1 represents used hours of shaking tefrrepre-
need to be set the minimum if state is the optimal or Subs'ents uged interval ant, A, B, and C is cofiicient

optimal solution, and the minimum solution is searched by =/ 4 o0 < 4 o solution accuracy the regular inter-

a r\?\?t'gn eqybatltl)f usmg'thﬁsfe?est_::]escegttmetg_od[S].Val assignment for the most congested cell is adapted. The
€ describe Ikenagas aigorithm. WO OIMEN~iarference is minimized in the cell because cells which

sionalN x M array is used as neuron representation and%we many demands tend to generate interference
neuronij, an assignment for celland channej, has inte- For profiling this algorithm, we implement this MMN

9ral Uij as '?pUt andvi; whose value is 0 or 1 as output.;, language. 10 CAP benchmark problems are used in
"The Vj; is 1" means that channgis assigned to celland 1) spon in Figure 3. The same parameter values as [2]
the Vi; is 0" means that there is no assignment, used in simulations. The compatibility mati®s and the
M neurons of each cell is sorted in descending order, a mand vectoDs which are used in the KUNZ problems
the outputs of top t@;-th neurons are 1 and others are 0. are obtained by considering only the first 10 regions in the
Vi = { 1: (f Uij=Uiin) @ KUNZ1 problem, 15 regions in the KUNZ2, 20 regions in
Y 0: (otherwise) the KUNZ3 and the entire data set in the KUNZ4.

Thn=Tsxa" (5)
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Problem[ N T M JReq] D [ C ]

EX1 4 5 6 D1 Cy
EX2 5 17 13 D, C
HEX1 21 | 37 | 120 D3 Cs
HEX2 21 | 91 | 120 D3 Cy
HEX3 21 | 21| 112 D4 Cs
HEX4 21 | 56 | 112 D, Cy

KUNZ1 | 10 | 30 72 [Dslio | [Cslio
KUNZ2 | 15 | 44 | 113 | [Ds]is | [Cslis
KUNZ3 | 20 | 60 | 140 | [Ds]oo | [Csl2o
KUNZ4 | 25 | 73 | 167 Ds Ds

(a) Input sizes of simulated benchmarks
0 0

Ci= C =

oo~y
oo u M

0
2
5

N 01 O
R OOM
=N OO o
NN O
GONEFP O

5
0
1
0
(if in the same cdll)

(if the 2 ring cell)
(else)

(if in the same cdll)

(if the 1 ring cell)

(if the 2 ring cdll)

(ese)

21101 01111 01111 00000 00000
12101 01101 01111 00000 00000
11211 11111 11110 00000 00000
00120 01111 11100 00000 00111
11102 00001 11111 10000 00000

00100 21111 00000 00000 00000
11110 12111 11100 00000 00000
11110 11211 11100 00000 00010
10110 11121 11000 00000 00011
11111 11112 11111 10000 01010

00111 01111 20111 10111 11111
11111 01111 02110 00000 00000
11111 01101 11211 11111 00000
Cs= 11101 00001 11121 11111 00000
11001 00001 10112 11111 11000

00001 00001 10111 21111 00000
00000 00000 00111 12110 00000
00000 00000 10111 11211 00000
00000 00000 10111 11121 11100
00000 00000 10111 10112 11100

00000 00000 10001 00011 21100
00000 00001 10001 00011 12111
00010 00000 10000 00011 11211
00010 00111 10000 00000 01121
00010 00010 10000 00000 01112

C3:Cjj

Cy:Cjj =

OFRPNW OFLN

(b) Example of compatibility matrices.

(c)Hexagonal network for HEX benchmark
DI =(1,1,1,3)
D] =(2,2,2,4,3)
D] =(2.6,2,2,2,4,4,13,19,7,4,4,7,7,9,14,7,2,2,4,2)
D; =(1,1,1,2,3,6,7,6,10,10,11,5,7,6,4,4,7,5,5,5,6)
D! =(10,11,9,5,9,4,5,7,4,8,8,9,10,7,7,6,4,5,5,7,6,&5,7
(d) Examples of demand vectors.
Figure 3: The bench mark problems

For each benchmark problem, usingfeient initialized
values for each neuron, the CAP is simulated 10 times by
the implemented algorithm and average maximum renewal
times are obtained by results. Where, the maximum re-
newal time means a maximum taken time for updating min-
ima of total interference. Also, proportion of demands to
elements oN x M matrix is added for data. The simula-
tion results are shown in Table Req represents the total
number of requirement®er does proportion of demands,
Sol does the average solving times &reh does the aver-
age maximum renewal times. TBel andRen increases in
proportion to thePer is seen. For each trial, over 300 up-
dating, escaping from the local minimum tends tfiidult
because overlarge value df; interrupts.

[ Problem] N T M [ Req | Per] Sol | Ren ]
EX1 4 5 6 | 0.13 8.01 3.37
EX2 5 17 13 | 0.15 41.1 13.7
HEX1 21 | 37 120 | 0.15 | 276 53.4
HEX2 21 | 91 120 | 0.06 | 195 40.4

HEX3 21 | 21| 112 | 025 | 291 90.3
HEX4 21 | 56 | 112 | 0.10 | 188 46.7
KUNZ1 | 10 | 30 72 | 0.24 | 249 82.3
KUNZ2 | 15 | 44 | 113 | 0.17 | 238 47.1
KUNZ3 | 20 | 60 | 140 | 0.11 | 198 425
KUNZ4 | 25 | 73 | 167 | 0.09 | 177 37.8

Table 1: Data for profiling and simulation results.

4. Proposed improvement methods for MNN

To improve the solution accuracy, a large hill-climbing
is executed for neurons after a certain period of renewal
times. Using the values &f the large hill-climbing makes
neurons a partway convergent state and it leads to better
convergence for the solution.

R =D;*06 (6)
o {8 Yo

whereR is an integer used for thresholds and the eq.(7)
shows six out of terD; are assigned t& The inputsU;;

of neurons in each cell are sorted in the descending order
and the beginning to the R-th neurons are selected and there
initialized input data is 2 and other neurons input data is 0.

S = 280% P + 50 (8)

Eq.(9) is a linear equation relating with the proportion of
demand® and the large hill-climbing tim&obtained from
analyzed result of benchmarks. If the minimum of total
interference is not updated for S times, the energy function
is assumed to lapse into the local minimum and large hill-
climbing is executed to escape.

Multi-thread processing is a measure to perform plural
threads in parallel in a process. There is no need to switch
memory spaces at threads switching and through the mem-
ory threads can share data mutually thus processing is exe-
cuted with few resources and overheads.

The procedures of the NNAs are following.

1. Assigning initial values for neurons input

2. Deriving neurons outpitt from U(U) .
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3. UpdatingU with the motion equatiofv). Problem [ Tkenaga [ Proposed algorithm|

: . . L. [ AV T Min [ AV Min |
4. Calculating total interference and keeping the mini- = o0 5T o0 5
mum valuéw). EX2 0.1 0] 00 0
: At i (i HEXL | 46.2 | 46 | 460 46
5. Gototo 2 until termination conditions are satisfied. o I o T =
Multi-threaded processing of proceduze3 and 4 for HEX3 | 786 | 76 | 772 74
neurons groups is employed. Global variables are used HEX4 | 170 | 15| 165 15
. KUNZ1 20.8 20 | 20.6 20
for shared data. Neuron outputsis shared data and KUNZZ | 312 | 30 [ 309 £
each thread have neurons inputscopied neuron output KUNZ3 | 130 13 [ 130 13
KUNZ4 | 06| 0| 00 0

V and total interference as local data. While to prevent

competing data synchronization is needed, each thread has Table 2: Simulation results for solution accuracy

thread-ID and cells are processed based on thread-ID thus

competing not happened at updatiigo global from lo-

cal memory. Hence, synchronization is needed only wheBroblem] 2@ D) [ 32D | 422) [ 5(3:2) | 6(3:3) | 7(4:3) [ 8@4) | ke

shared data reading. Additionally copying local data fron EX; 8-88 8-88 8.88 8.88 8.88 8.88 8.88 8.88

global data every renewal to minimize deallng ywth sharetea 1516 185 1141 096 089 0791 097 310

data decreases the synchronization. For additionallgrfast HExz | 13.65| 9.67| 6.95| 542 491| 412| 481 19.48

processing the multi-threaded processing for procedure :Eﬁ g-gi ggg g-;“; g-gé g-gg 2-‘; 2-‘9‘: %-2‘1‘

which is a bottleneck, is proposeéd. holds neuron outputs «onzi T 635 038 028 038 024 037 0395 053

V and total interference as shared data and cogied lo- [KUNZ2 | 167| 130| 098] 084| 080 068 081 2.36
i H | KUNZ3 526| 3.75 2.81 2.21 2.01 1.78 2.14| 7.47

_cal data. InU, becauseT of multi-threaded processmg,_tot_ 7 B R B e e e AR

interference translate into shared data and synchroaizati

are needed at data sharing. Additionally speculative execu Table 3:Execution times of proposed multi-threads

tion of U andV during processingV is used. There is de- processing (sec).

pendency betweeld andW. However, synphromzmg start ¢ ~onclusions

of data read from shared data resolves it. The numbers of )

threads used for executingV andwW areK/2 and</2 (K In this paper, we present a faster and more accurate pro-

is even) or K — 1)/2 + 1 and K — 1)/2 (K is odd) respec- cessing methods for the existing neural network algorithm

tively, whereK is the total number of threads in parallel.for the channel assignment problem in cellular radio net-

Figure 4 shows an example if the number of threads is 4 works and evaluate it's performance. A large hill-climbing
method is used to improve solution accuracy and multi-

L

Vv V) \ U . . .
Thread 1: > - thread processing is employed to speed-up processing up
v u v U to twice faster and about up to 4 times faster than the exist-
Thread 2——» | ———»—» |—— > . .
ing algorithm.
Thread 3 w w As future works, we will address the dynamic channel
w W assignment problem and hardware implementation with the

Thread 4

proposed algorithm.

. . . . . References
Figure 4: Multi-threads processing with speculative exec. ] ) ) ] )
[1] K. Smith, and M. Palaniswami,“Static and dynamic chdnne

5. Simulation Results assignment using neuralnetworks,”|EEE Jornal of Commun.,
The proposed methods are implemented in C language Vol. 15, no. 2, pp. 238-249, Feb. 1997.

on dual Xeon X5450. 3.0GHz. 4 core. 16G Mem. Linux 2] K. Ikengaga, et al.,"An expanded maximum neural network
o . L L Igorithm for a channel assignment problem in cellularaadi

2.6.18, GCC 4.1.2 and compiler option -0O2, and we simu- a ,

late 10 times with dferent initial random values for each gegv;ogssé_éggca;;azgégf Fundamentals, vol, E82-A, no.

benchmark problem. We show the results in Table 2, whicfg] K. Okutani, et al.“A study on a two-phase neural network

are the solution accuracy of the proposed method and Ike- algorithm for channel assignment in cellular radio netvegrk

naga’s one. "AV” represents the average of the objective IEICE, Tech. Rep. ss96-52, Jan. 1997. .

values and “Min” represents the minimum solutions. Ad4l K. Ikenaga. et al."A maximum neural network algorithnt fo

for the average values, the proposed algorithm is the same a channel assignment problem in cellular radio networks,”

as or better than Ikenaga over all problems and as for thg, 'E/CE, Tech. Rep. NLP97-172, Mar. 1998.

- X §] Y. Takefuji and T. Saito,"Models of neuralnetworks,”
minimum value better values are seen in HEX2 and HEXS. Handbook of applied cases: Neural computing, Corona,

; ; 2001, pp.17-56.

Table 3 shQW§ the Cqmputatlon times of propose ] N. F(Jr?gbiki and Y. Takefuji,"A nerural network parallel
method gnd eX|st|n.g -algont.hm(llke.), where the number o algorithm for channel assignment problems in cellularaadi
threads is 2 to 8. Minimum time is seen from 7 threads pro-  heworks,” IEEE Trans. of Vehiclular Technology, vol. 41,
cessing. 7 threads processing leads to better outcomes thanng, 4, pp. 430-437, Nov. 1992.
above for the all problems and achieve up to twice fastqr] W.K.Hale,“Frequency Assignment: Theory and Applica-
processing and about up to 4 times faster processing than tions,” Proc.IEEE, vol.68, no.12, pp. 1497-1514, Dec. 1980
the existing algorithm.

-130-



	Navigation page
	Session at a glance
	Technical program

