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Abstract—In recent years,the popularity of cellular mo-
bile communication systems increases steady. However,
the usable frequency spectrum or channels for the Cellu-
lar Radio Networks(CRNs) are limited. Thus, algorithms
for an efficient utilization of channels: the Channel As-
signment Problem(CAP) have become important. In this
paper, we propose an improved Neural Network Algorithm
(NNA) with parallelism to improve solution accuracy and
speed-up processing for the static CAP in CRNs. Our pro-
posed algorithm achieves the improved solution accuracy
because of large hill-climbing. In addition, parallel pro-
cessing using multi-thread can achieve faster processing.
We verify performance through simulations using bench-
mark problems and our proposed algorithm can search bet-
ter solutions and obtains faster processing speeds than the
existing one.

1. Introduction

Recently, the popularity of cellular mobile communica-
tion systems increases steady. However, the usable fre-
quency spectrum or channels for the Cellular Radio Net-
works(CRNs) are limited. Thus, algorithms for an effi-
cient utilization of channels:the Channel Assignment Prob-
lem(CAP) have become increasingly important[1]-[4],[6].
CRNs consist of a number of fixed Base Transceiver Sta-
tions (BTSs) and a larger number of connection requests
from cellular phone users. These users can receive cellular
phone service due to the channel assignments allocated by
a BTS. The CAP entails allocating channels to cells in the
CRN such that the effective assignment of required chan-
nel numbers minimizes mutual interference while satisfy-
ing electromagnetic compatibility constraints as possible.
We consider the following three constraints [6]. (1)For a
certain pair of radio cells, the same channel can not be used
simultaneously. (2)Any pair of channels assigned to a cell
should have a certain distance between them. (3)The adja-
cent channels in the frequency domain can not be assigned
to adjacent cells simultaneously.

The CAP can be reduced from the graph-coloring prob-
lem which is NP-complete [7], and its computation time
grows exponentially for a large-scale network. Thus, an ex-
act search for the optimal solution is impracticable. For this
reason, many researchers have investigated approximate al-
gorithms for the CAP. Algorithms using Neural Network
Algorithms(NNAs) have been proposed[1]-[4],[6].

In this paper, an expanded Maximum Neural Network
(MNN) algorithm, proposed by Ikenaga and colleagues[2],
is verified, and for improvement of the solution accuracy,
large hill-climbing is suggested. The addition of large hill-
climing causes slower processing speeds than the origi-
nal one. Thus, speed-up methods using multi-thread are
proposed. We verify performance of proposed algorithm
through simulations using some benchmarks and our pro-
posed algorithm can search better solutions and obtains
faster processing speeds than the existing one.

2. Channel Assignment Problem
The Channel Assignment Problem(CAP) consists of a

number of users and Base Transceiver Stations(BTSs). In
this paper, a BTS is assumed to have a hexagonal-shaped
management domain (cell) as shown in Figure 1. If a user
associated with a cell requests a connection, the BTS as-
signs a channel to accommodate it. Then, the effective
channel assignment is required for each cell on the cellular
radio network as the CAP.

Figure 1: Cellular radio network

We assumeN cells andM channels in the CRNs. For a
demand vectorD (the channel requirements for cells) and a
N ×M compatibility matrixC, a channel assignment min-
imizing total interference is required. The interference be-
tween cells is represented by interference matrixE, a three
dimensionalN × N ×M matrix. An elementei jk in E indi-
cates interference of any channels as having a distance of
k from channelj assigned to celli. The demand vectorD
hasN elements and an elementdi indicates the number of
required channels form celli.

In this paper, the interference matrixE assumes that the
compatibility matrixC givesE as defined by Smith[1].

ei j0 = ci j , ei jk =

{

0 : (i f ci j ≤ k)
ci j − k : (i f ci j > k)

(1)

whereci j (i=1, · · ·, N, j=1,· · ·, N) is a element ofC and is
given by Gamst’s compatibility matrix of the CAP.
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Figure 2 shows an example of the CAP with four cells.
Figure 2(a) shows compatibility matrixC and demand vec-
tor D. Figure 2(b) illustrates interference matrixE. Figure
2(c) shows the corresponding networks topology of ma-
trix C. The solution for the minimum number of channels
needed for no interference assignment in this example is 11
because 11 channels would be needed for cell 4 as can be
seen in Figure 2. Figure 2(d) shows an optimal solution in
this example, where the total interference is 1.
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(a)Compatibility matrix and demand vector
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(b)Interference matrix

(c) The corresponding network topology

(d) Example of a channel assignment result
Figure 2: Example of CAP

3. Neural network algorithm and Ikenaga’s algorithm
A Neural Network Algorithm(NNA) is a heuristic algo-

rithm and a mathematical model based on a neural net-
work. A neural network model is decided by ways of ag-
gregates of neurons. A neuron has multi inputs and one
output which collects other neurons outputs as input then
calculates own state and decides the output. In this paper,
the Hopfield neural network [5] as the neural network and
an extended maximum neuron as a neuron model [2] are
employed. To solve problems using NNA, problems need
to be represented by neurons, an energy function that is a
non-negative function and intends states of whole neurons
need to be set the minimum if state is the optimal or sub-
optimal solution, and the minimum solution is searched by
a motion equation using the steepest descent method[5].

We describe Ikenaga’s NNA algorithm. A two dimen-
sionalN × M array is used as neuron representation and a
neuronij, an assignment for celli and channelj, has inte-
gral Ui j as input andVi j whose value is 0 or 1 as output.
”The Vi j is 1” means that channelj is assigned to celli and
”the Vi j is 0” means that there is no assignment.

M neurons of each cell is sorted in descending order, and
the outputs of top toDi-th neurons are 1 and others are 0.

Vi j =

{

1 : (i f Ui j ≥ Ui−th)
0 : (otherwise)

(2)

whereUi−th is thedi-th largest value inUi1,· · ·,UiM, If more
than di neurons satisfyUi j ≥ Ui−th, the neurons which
output 0 previously are selected preferentially because the
search space is expanded by the changes in the assignment
result and more too, neurons which output 1 are determined
randomly from acceptable neurons. By employing the ex-
panded maximum neuron, the energy function has only one
term which represents the total interference.

E =
A
2

N
∑

i=1

M
∑

j=1

N
∑

p=1

M
∑

q=1,(i, j),(p,q)

eip| j−q|VpqVi j (3)

where (i,j),(p,q) represents q,j when i=p.
The motion equation is defined as following.

dUi j

dt
= −
∂E
∂Vi j

= −A1

N
∑

p=1

M
∑

q=1,(i, j),(p,q)

eip| j−q|Vpq
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+B · h(
N
∑
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M
∑

q=1,(i, j),(p,q)

eip| j−q|VpqVi j)

+C(1− Vi j) (4)

where the termA1 is obtained by differentiating partially
the energy function with respect toVi j. In the case of
(t mod Tω) ≥ ω), the termA1 is used, and in the other
case the termA2 is used. The omega function ejects so-
lution from the local minimum by encouraging competi-
tion between neurons. The termB is a hill-climbing term
which serves escaping from the local minimum, by assign-
ing channels have no interference from surrounding cells.
The function h(x) is 1 ifx < 0, in other cases h(x)=0. The
termC is shaking term. By deterring immobilization of the
channel assignment, the shaking term encourage escaping
from local minimum.

Tn = T s × α
n (5)

whereTn represents used hours of shaking term,T s repre-
sents used interval andA1, A2, B, and C is coefficient.

For advancement of solution accuracy the regular inter-
val assignment for the most congested cell is adapted. The
interference is minimized in the cell because cells which
have many demands tend to generate interference.

For profiling this algorithm, we implement this MMN
in C language. 10 CAP benchmark problems are used in
[1] shown in Figure 3. The same parameter values as [2]
used in simulations. The compatibility matrixC5 and the
demand vectorD5 which are used in the KUNZ problems
are obtained by considering only the first 10 regions in the
KUNZ1 problem, 15 regions in the KUNZ2, 20 regions in
the KUNZ3 and the entire data set in the KUNZ4.
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Problem N M Req D C

EX1 4 5 6 D1 C1
EX2 5 17 13 D2 C2

HEX1 21 37 120 D3 C3
HEX2 21 91 120 D3 C4

HEX3 21 21 112 D4 C3
HEX4 21 56 112 D4 C4

KUNZ1 10 30 72 [D5]10 [C5]10
KUNZ2 15 44 113 [D5]15 [C5]15

KUNZ3 20 60 140 [D5]20 [C5]20
KUNZ4 25 73 167 D5 D5

(a) Input sizes of simulated benchmarks
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(b) Example of compatibility matrices.

(c)Hexagonal network for HEX benchmark

DT
1 = (1, 1, 1, 3)

DT
2 = (2,2,2,4,3)

DT
3 = (2,6,2,2,2,4,4,13,19,7,4,4,7,7,9,14,7,2,2,4,2)

DT
4 = (1,1,1,2,3,6,7,6,10,10,11,5,7,6,4,4,7,5,5,5,6)

DT
5 = (10,11,9,5,9,4,5,7,4,8,8,9,10,7,7,6,4,5,5,7,6,4,5,7,5)

(d) Examples of demand vectors.
Figure 3: The bench mark problems

For each benchmark problem, using different initialized
values for each neuron, the CAP is simulated 10 times by
the implemented algorithm and average maximum renewal
times are obtained by results. Where, the maximum re-
newal time means a maximum taken time for updating min-
ima of total interference. Also, proportion of demands to
elements ofN × M matrix is added for data. The simula-
tion results are shown in Table 1.Req represents the total
number of requirements,Per does proportion of demands,
Sol does the average solving times andRen does the aver-
age maximum renewal times. TheSol andRen increases in
proportion to thePer is seen. For each trial, over 300 up-
dating, escaping from the local minimum tends to difficult
because overlarge value ofUi j interrupts.

Problem N M Req Per Sol Ren

EX1 4 5 6 0.13 8.01 3.37
EX2 5 17 13 0.15 41.1 13.7

HEX1 21 37 120 0.15 276 53.4
HEX2 21 91 120 0.06 195 40.4
HEX3 21 21 112 0.25 291 90.3
HEX4 21 56 112 0.10 188 46.7

KUNZ1 10 30 72 0.24 249 82.3
KUNZ2 15 44 113 0.17 238 47.1
KUNZ3 20 60 140 0.11 198 42.5
KUNZ4 25 73 167 0.09 177 37.8

Table 1: Data for profiling and simulation results.

4. Proposed improvement methods for MNN
To improve the solution accuracy, a large hill-climbing

is executed for neurons after a certain period of renewal
times. Using the values ofU the large hill-climbing makes
neurons a partway convergent state and it leads to better
convergence for the solution.

R = Di ∗ 0.6 (6)

Ui j =

{

2 : (i f Ui j ≥ UR)
0 : (else)

(7)

whereR is an integer used for thresholds and the eq.(7)
shows six out of tenDi are assigned toR. The inputsUij

of neurons in each cell are sorted in the descending order
and the beginning to the R-th neurons are selected and there
initialized input data is 2 and other neurons input data is 0.

S = 280∗ P + 50 (8)

Eq.(9) is a linear equation relating with the proportion of
demandsP and the large hill-climbing timeS obtained from
analyzed result of benchmarks. If the minimum of total
interference is not updated for S times, the energy function
is assumed to lapse into the local minimum and large hill-
climbing is executed to escape.

Multi-thread processing is a measure to perform plural
threads in parallel in a process. There is no need to switch
memory spaces at threads switching and through the mem-
ory threads can share data mutually thus processing is exe-
cuted with few resources and overheads.

The procedures of the NNAs are following.
1. Assigning initial values for neurons inputU.
2. Deriving neurons outputV from U(U) .
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3. UpdatingU with the motion equation(V).
4. Calculating total interference and keeping the mini-

mum value(W).
5. Goto to 2 until termination conditions are satisfied.
Multi-threaded processing of procedure2 ,3 and 4 for

neurons groups is employed. Global variables are used
for shared data. Neuron outputsV is shared data and
each thread have neurons inputsU, copied neuron output
V and total interference as local data. While to prevent
competing data synchronization is needed, each thread has
thread-ID and cells are processed based on thread-ID thus
competing not happened at updatingV to global from lo-
cal memory. Hence, synchronization is needed only when
shared data reading. Additionally copying local data from
global data every renewal to minimize dealing with shared
data decreases the synchronization. For additionally faster
processing the multi-threaded processing for procedure4,
which is a bottleneck, is proposed.W holds neuron outputs
V and total interference as shared data and copiedV as lo-
cal data. InU, because of multi-threaded processing, total
interference translate into shared data and synchronization
are needed at data sharing. Additionally speculative execu-
tion of U andV during processingW is used. There is de-
pendency betweenU andW. However, synchronizing start
of data read from shared data resolves it. The numbers of
threads used for executingU,V andW areK/2 andK/2 (K
is even) or (K − 1)/2+ 1 and (K − 1)/2 (K is odd) respec-
tively, whereK is the total number of threads in parallel.
Figure 4 shows an example if the number of threads is 4.

Figure 4: Multi-threads processing with speculative exec.

5. Simulation Results
The proposed methods are implemented in C language

on dual Xeon X5450, 3.0GHz, 4 core, 16G Mem, Linux
2.6.18, GCC 4.1.2 and compiler option -O2, and we simu-
late 10 times with different initial random values for each
benchmark problem. We show the results in Table 2, which
are the solution accuracy of the proposed method and Ike-
naga’s one. “AV” represents the average of the objective
values and “Min” represents the minimum solutions. As
for the average values, the proposed algorithm is the same
as or better than Ikenaga over all problems and as for the
minimum value better values are seen in HEX2 and HEX3.

Table 3 shows the computation times of proposed
method and existing algorithm(Ike.), where the number of
threads is 2 to 8. Minimum time is seen from 7 threads pro-
cessing. 7 threads processing leads to better outcomes than
above for the all problems and achieve up to twice faster
processing and about up to 4 times faster processing than
the existing algorithm.

Problem Ikenaga Proposed algorithm
AV. Min AV. Min

EX1 0.0 0 0.0 0
EX2 0.1 0 0.0 0

HEX1 46.2 46 46.0 46
HEX2 16.7 16 16.5 15
HEX3 78.6 76 77.2 74
HEX4 17.0 15 16.5 15

KUNZ1 20.8 20 20.6 20
KUNZ2 31.2 30 30.9 30
KUNZ3 13.0 13 13.0 13
KUNZ4 0.6 0 0.0 0

Table 2: Simulation results for solution accuracy

Problem 2(1:1) 3(2:1) 4(2:2) 5(3:2) 6(3:3) 7(4 : 3) 8(4:4) Ike.

EX1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EX2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HEX1 2.16 1.55 1.14 0.96 0.89 0.79 0.97 3.10
HEX2 13.65 9.67 6.95 5.42 4.91 4.12 4.81 19.48
HEX3 0.73 0.56 0.44 0.42 0.38 0.41 0.43 1.01
HEX4 5.01 3.52 2.57 2.05 2.06 1.67 1.98 7.14

KUNZ1 0.39 0.38 0.28 0.28 0.24 0.27 0.29 0.53
KUNZ2 1.67 1.30 0.98 0.84 0.80 0.68 0.81 2.36
KUNZ3 5.26 3.75 2.81 2.21 2.01 1.78 2.14 7.47
KUNZ4 12.03 8.26 6.59 4.97 4.59 3.85 4.45 13.43

Table 3:Execution times of proposed multi-threads
processing (sec).

6. Conclusions

In this paper, we present a faster and more accurate pro-
cessing methods for the existing neural network algorithm
for the channel assignment problem in cellular radio net-
works and evaluate it’s performance. A large hill-climbing
method is used to improve solution accuracy and multi-
thread processing is employed to speed-up processing up
to twice faster and about up to 4 times faster than the exist-
ing algorithm.

As future works, we will address the dynamic channel
assignment problem and hardware implementation with the
proposed algorithm.
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