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Abstract— In a mixture of exponential probability dis-
tributions, the mean field approximation is used in wide
applications because it provides the fast learning algo-
rithm. The mean field approximation in Bayesian learning
is called the variational Bayes method. It was clarified by
Kazuho Watanabe et. al. that there exists the phase transi-
tion of the variational free energy with respect to the hyper-
parameter. In this paper, we study the generalization errors
of variational Bayes learning, and experimentally show the
following facts. (1) The generalization error also has the
phase transition. (2) At ordinary point, the generalization
error strongly depends on the condition that the true distri-
bution is contained in the learning machine or not, whereas,
at the critical point, the generalization error does not de-
pend on the condition.

1. Introduction

The variational Bayes learning is applied to a lot of in-
formation systems because it gives us the fast training algo-
rithm by the mean field approxiamtion of Bayes a posteri-
ori distribution. It is important to clarify the generalization
performance of the variational Bayes in order to establish
the optimal design method. However, almost all learning
machines to which we can apply the varitational Bayes are
not regular but singular statistical models, resulting that the
conventional statistical theory can not be employed.

In Bayes learning, the mathematical foundation was clar-
ified [10]. The free energy F is asymptotically equal to

F = S n + λ log n − (m − 1) log log n + R,

where n is the number of training samples, S n is the em-
pirical entrpoy, and R is a random variable. The constants
λ and m are determined by the zeta function of the learn-
ing theory. Let G be the generalization error which is de-
fined by the Kullback-Leibler distance from the true distri-
bution to the estimated distriution. The generalization error
of Bayes learning is equal to

G =
λ

n
+ o(

1
n

).

On the other hand, neither the free energy nor the gener-
alization error was clarified in the vatiational Bayes learn-

ing. The variational Bayes free energy F̂ satifies the in-
equality,

F ≤ F̂.

Moreover, it was clarified in [7, 8] that F̂ has a phase tran-
sition with respect to the hyperpramater of the a priori dis-
tribution at ϕ0 = (M + 1)/2, where M be the dimension
of the data. However, in the variational Bayesian learning,
the behavior of the generalization error has not yet been
clarified.

In this paper, we experimentally show that the varia-
tional generalization error Ĝ also has the phase transition
at ϕ0 = (M+1)/2, and that, if the learning machine is more
complex than the true distribution, then the generalization
error is largest at the critical point, whereas, if otherwise,
the generalization error is smallest at the critical point.

2. Variational Bayes Learning

In this paper, we study a normal mixture on M dimen-
sional Euclidean space RM ,

p(x|w) =
K∑

k=1

ak
√

2π
M exp(−1

2
∥x − bk∥2), (1)

where K is the number of mixtured normal distributions.
The parameter w is given by

w = (a, b) = {(ak, bk); k = 1, 2, ...,K},

which satisfies

0 ≤ ak ≤ 1, a1 + a2 + · · · + aK = 1

and bk ∈ RM . In variational Bayesian learning, the conju-
gate prior is employed.

φ(w) = φ1(a)φ2(b),

φ1(a) =
Γ(Kϕ0)
Γ(ϕ0)K δ

( K∑
k=1

ak − 1
) K∏

k=1

aϕ0−1
k ,

φ2(b) =

(
β0

2π

)KM/2 K∏
k=1

exp(−β0

2
∥bk − b0∥2),

where ϕ0 > 0, β0 > 0, and b0 ∈ RM are hyperparameters.
The hyperparameter ϕ0 is important because it determines
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the balance of the mixture ratio. In this paper we study the
phase transition of generalization error with respect to the
hyperparameter ϕ0.

Let Y = (Y1,Y2, ..., YK) be the competitive hidden vari-
able. That is to say, Y is a random variable which is defined
on the set,

C = {(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, 0, ..., 1)}.

In other words, only one of Yk is chosen to be one then the
others are equal to zero. The simultaneous distribition of
(X,Y) is defined by

p(x, y|w) =
K∏

k=1

( ak
√

2π
M exp(−∥x − bk∥2

2
)
)yk

,

where y = (y1, y2, ..., yK) ∈ C. Note that the marginal dis-
tribution of p(x, y|w) is equal to p(x|w),

p(x|w) =
∑
y∈C

p(x, y|w),

where
∑

y∈C shows the sum over C. Therefore, the learn-
ing machine p(x|w) can be understood to be marginalized
p(x, y|w), where y is a hidden variable.

Let dn and hn be the set of training samples and the cor-
responding hidden variables respectively,

dn = {xi ∈ RM; i = 1, 2, ..., n},
hn = {yi ∈ C; i = 1, 2, ..., n, },

where dn ∈ RMn and hn ∈ Cn. Then the simultaneous prob-
ability density function on (dn, hn,w) is equal to

P(dn, hn,w) = φ(w)
n∏

i=1

p(xi, yi|w). (2)

For the given set of training samples dn, the probability dis-
tribution on (hn,w) is equal to

P(hn,w|dn) =
1
Zn

P(dn, hn,w),

where Zn is the partition function defined by

Zn =
∑

hn∈Cn

∫
dw P(dn, hn,w)

=

∫
dw φ(w)

n∏
i=1

p(xi|w).

The partition function is called the evidence or the marginal
likelihood of p(x|w) and φ(w).

In the variational Bayesian learning, the probability dis-
tribution P(hn,w|dn) is approximated by q(hn)r(w). The
probability distributions q(hn) and r(w) are optimized by
the minimization of the Kullback-Leibler distance between
them,

K(q, r) =
∑

hn∈Cn

∫
dw q(hn)r(w) log

q(hn)r(w)
P(hn,w|dn)

.

Let S be the set of independent probability distributions on
Cn × Rd,

S = {q(hn)r(w)}.

The probability distribution P(hn,w|dn) is not contained in
S in general, however, the optimal distribution is found in
this set. The minimization of K(q, r) is equivalent to the
minimization of the functional free energy,

F (q, r) =
∑

hn∈Cn

∫
dw q(hn)r(w) log

q(hn)r(w)
P(hn,w, dn)

.

If P(hn,w|dn) is contained in the set S, then the minimum
value of F (q, r) is equal to the true free energy − log Zn.
The variational free energy is defined by

F̂ ≡ min
(q,r)∈S

F (q, r).

By the definition, the variational free energy is not smaller
than the true free energy,

F̂ ≥ F.

In variational Bayes learning, it is shown that q(hn) and
r(w) should satisfy the relations,

q(hn) =
1

C1
exp
(
Er[log P(dn, hn,w)]

)
, (3)

r(w) =
1

C2
exp
(
Eq[log P(dn, hn,w)]

)
, (4)

where Er[ ] and Eq[ ] are expectations over r(w) and
q(hn), respectively. Here C1,C2 > 0 are normalizing con-
stants. The learning algorithm of the variational Bayes
learning is defined by the recursive procedure of these two
equations. If the expectation value of the hidden varibale
yk

i = Eq[yk
i ] is given, then

r(a, b) ∝
K∏

k=1

(ak)S k−1 exp(−Tk

2
∥bk − Uk∥2),

where S k,Tk Uk are defined by

S k =

n∑
i=1

yk
i + ϕ0,

Tk =

n∑
i=1

yk
i + β0,

Uk =
1
Tk
{

n∑
i=1

yk
i xi + β0b0}.

Conversely, if the foregoing values are given, then

q(hn) ∝
n∏

i=1

K∏
k=1

exp(yk
i Lk

i ),

- 134 -



where

Lk
i = ψ(S k) − 1

2
{M
Tk
+ ∥xi − Uk∥2},

yk
i =

exp(Lk
i )∑K

j=1 exp(L j
i )
.

Finally we obtained the variational Bayes learning algo-
rithm,

(S k,Tk,Uk) ⇐ yk
i ,

yk
i ⇐ (S k,Tk,Uk).

3. Variational Bayes Theory

The Bayes a posteriori distribution is defined by

p(w|Dn) =
1
Zn

∑
hn

P(hn,w|Dn),

and the Bayes predictive distribution is defined by

p(x|Dn) =
∫

p(x|w)p(w|dn)dw.

Let the generalization error of Bayes learning G is defined
by the Kullback-Leibler distance from the true distribution
q(x) to the Bayes predictive distribution p(x|dn),

G = EEX

[
log

q(X)
p(X|dn)

]
,

where E shows the expectation value over the training sam-
ples dn and EX[ ] that over the testing samples. In Bayes
learning it is well known that, for an arbitrary n,

E[G] = E[Fn+1] − E[Fn],

where Fn is the free energy for the given n samples.
The variational generalization error is defined by

Ĝ = EEX

[
log

q(X)
p(X|ŵ)

]
,

where ŵ is the parameter that is optimized by the varia-
tional Bayes learning. However, the variational Bayes gen-
eralization error is not equal to the increase of the free en-
ergy.

E[Ĝ] , E[F̂n+1] − E[F̂n].

The following theorem is well known in variational
Bayes learning [7, 8].
Theorem Let the true probability distribution be given by
eq.(1) with K0. Let M∗ = (M + 1)/2. The variational free
energy F̂n satisfies the following inequality,

S n + λ1 log n + nKn(ŵ) + c1 < F̂n < S n + λ2 log n + c2,

where S n is the empirical entropy, Kn(ŵ) is the empirical
Kullback-Leibler distance using the variational estimator
ŵ, c1, c2 are constants, and both λ1 and λ2 satisfy

λ1 =

{
(K − 1)ϕ0 + M/2 (ϕ0 ≤ M∗)
(MK + K − 1)/2 (ϕ0 > M∗)

λ2 =

{
(K − K0)ϕ0 + (MK0 + K0 − 1)/2 (ϕ0 ≤ M∗)

(MK + K − 1)/2 (ϕ0 > M∗) .

This theorem shows that, if the learning machine is more
complex than the true distribution, the variational free en-
ergy has the phase transition at ϕ0 = (M + 1)/2.

4. Experiments

In the experiments, we adopoted the condition, M = 2,
n = 200, K = 2, b0 = 0, and β0 = 0.000001. In
this case the critical point of the variational free energy is
ϕ0 = (M + 1)/2 = 1.5. In the true distribution, the mix-
ture ratios were set as (0.5, 0.5), (0.7, 0.3), and (0.9, 0.1),
which are shown in Figures 1, 2, and 3 respectively. In
each cases, the distance between the average of two normal
distributions were set as D = 0, 1, 2, 3. From Figure 1 to 3,
the horizontal and longitudinal lines respectively show the
hyperparameter ϕ0 and the generalization error.

In experiments D = 0, 1, there were phase transitions of
the generalization error at ϕ0 = (M+1)/2. That is to say, the
learning machine was more complex than the true distribu-
tion, the generalization error had also the phase transition.
In such cases, the generalization errors were largest at the
critical point.

In experiments D = 2, 3, it seems that the generalizaton
errors were smallest at the critical point.

5. Discussion

From the information engineering point of view, the
method to determine the hyperparameter is important. If
the hyperparameter ϕ0 is chosen as the critical point, then
the generalization error does not depend on the condition
of the true distribution. If it is chosen far from the criti-
cal point, then the generalization error becomes smaller or
larger than that of the critrical point.

In the real world applications, the hyperparameter is
sometimes optimized by the minimization of the variational
free energy. It is the future study to clarify the generaliza-
tion errors in such an optimization method.

6. Conclusion

We clarified by experiments that the variational general-
ization error has the phase transition whose critical point is
ϕ0 = (M + 1)/2. If the learning machine is more complex
than the true distribution, then the generalization error is
largest at the critical point, whereas, if otherwise, then the
generalization error is smallest at the critical point.
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Figure 1: Hyperparameter ϕ0 and generalization error
,the true mixture ratios are (0.5, 0.5)
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Figure 2: Hyperparameter ϕ0 and generalization error
,the true mixture ratios are (0.7, 0.3)
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