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Abstract—We analyzed distributed detection of a signal
in a system where the signal level is different at each detec-
tor. As an example, we consider the case where the sig-
nal level is dependent on the distance of the detector from
the source. Each detector separately compares the input
with its threshold value, and the detection results from all
detectors are combined using a K-out-of-N rule. Optimal
detection requires adjusting the threshold of each detector
to a value suitable for the signal level at that detector. In
a suboptimal system consisting of detectors with identical
detection thresholds, the detection performance may have
a non-monotonic dependence on noise intensity, and per-
formance can be improved by optimizing noise intensity.

1. Introduction

Various noise-assisted effects are known in nonlinear
systems. Noise-assisted means that a performance prop-
erty of the system increases with noise intensity over some
range of noise intensity. In particular, stochastic resonance
(SR) has been studied in various systems [1]. SR means
that the resonance response of a nonlinear system to a sub-
threshold signal can be optimized by adding noise. It has
been suggested that sensors in biological system may use
SR to detect signals in noisy environments. Information
theoretical approaches have been used to study SR of ape-
riodic signals, for binary signals [2, 3, 4, 5, 6, 7, 8]. In these
studies, bit error probability or mutual information is used
to measure transmission of information between input and
output.

SR in a threshold system with a signal and noise is
closely related to the signal detection problem [5, 6, 8] in
classical engineering studies [9]. Here we consider the sig-
nal detection problem in which the signal is binary (0, 1)
and noise has continuous values. Signal detection deter-
mines from the noisy input whether the signal’s value is 0
or 1. Full knowledge about the signal level and noise can
be used to obtain an optimal detector by calculating the op-
timal threshold. The optimization criterion is generally the
minimal Bayesian risk or the maximal correctness proba-
bility.

An optimal detector with an optimal threshold shows
monotonic decay of correctness probability with increas-
ing noise intensity. On the other hand, when the thresh-
old of the detector is suboptimal, the dependence on noise-
intensity may be non-monotonic, and increasing the noise
intensity can maximize the probability of correct detec-
tion [10]. We call this noise-assisted detection [11]. One of
the reasons why we may need to use detectors with subopti-
mal thresholds is that we do not have full knowledge about
the signal and noise. When the threshold is estimated from
only partial knowledge, the threshold may be suboptimal.

Here we consider noise-assisted detection in sen-
sor networks and especially focus on distributed detec-
tion (DD) [12, 13, 14]. We consider a DD system, which
has multiple detectors working in parallel and decides
global output at a data fusion center based on the local deci-
sions gathered from each detector. Each detector separately
detects the signal, and the detection results from all detec-
tors are combined using a data fusion rule. When the local
detector output is binary, the input-output rule of the data
fusion is a Boolean function. In particular, we consider a
system in which each detector generates a binary output by
comparing the input with its threshold value. In a previous
work, we have shown that even with optimal detectors in
which the threshold value is optimally matched to the sig-
nal level, noise-assisted DD can occur when the fusion rule
is suboptimal [15].

In this paper, we consider the system where the detec-
tors are not optimal - the detectors have identical threshold
values but the signal level may be different at each detec-
tor. As an example, we consider the case where the signal
level is dependent on the distance of the detector from the
source. Each detector separately compares the signal with
its threshold value, and the detection results from all de-
tectors are combined using a K-out-of-N rule. Noise is in-
dependent but with identical distribution for each detector.
We show that the detection performance may have a non-
monotonic dependence on noise intensity, and performance
can be improved by optimizing noise intensity.
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2. Noise-assisted detection

We consider the following signal detection problem, as
in Ref. [7, 8, 9]. An input signal has values 0 (correspond-
ing to bit 0) and 1 (corresponding to bit 1) and prior proba-
bilities for each input bit are defined as p0 and p1(= 1− p0),
respectively. Noise is Gaussian with mean 0 and variance
σ2. We define P0(x) and P1(x) as two probability distribu-
tions corresponding to the inputs 0 and 1 with added noise,
respectively. Detection of the signal with noise corresponds
to determining that the input signal is 0 or 1 by comparing
with a threshold, θ.

Here we define p00 as probability that input 0 is detected
correctly and also define p10 as probability that input 0 is
detected as input 1. p01 and p11 for input 1 are defined
similarly. These probabilities can be calculated as follows.

p00 =

∫ θ

−∞

P0(x)dx = 1 − p10,

p10 =

∫ ∞

θ

P0(x)dx,

p01 =

∫ θ

−∞

P1(x)dx, (1)

p11 =

∫ ∞

θ

P1(x)dx = 1 − p01.

We note that p00, p10, p01, and p11 are functions of σ, be-
cause P0(x) and P1(x) have Gaussian distributions.

To evaluate the dependence of signal detection on noise
intensity σ, we can define correctness probability as fol-
lows.

Pcor(σ) = Pcor(p0, p1, p00, p11)

= p00 p0 + p11 p1. (2)

We note that the probabilities are functions of σ.
Standard signal detection techniques assume complete

knowledge concerning the values (levels, amplitudes) of
the binary signals and so we can calculate the optimal
threshold θopt to maximize correctness probability. How-
ever, when the values of the binary signals are unknown,
we cannot know for sure the optimal threshold.

When the value θ is larger than the true value of in-
put 1 (or smaller than the value of input 0) in the case of
p0 = p1 = 1/2, existence of noise can assist the detec-
tion. This is noise-assisted signal detection. For example,
when p1 and p0 are equal, noise-assists detection when the
noise increases the probability p11 more than it decreases
the probability of p00. We have described noise-assisted de-
tection in a system with a suboptimal threshold in σ [11],
showing how finite noise intensity σ can optimize the cor-
rectness probability Pcor.

When the threshold is optimal (in the example, θopt =
1/2), correctness probability decreases monotonically
against noise intensity σ. In other words, noise degrades
the detection by an optimal threshold. Here we note that

the correctness probability for suboptimal threshold never
exceeds the correctness probability for the optimal thresh-
old, as expected from the data processing inequality [16].

3. Noise-assisted distributed detection

3.1. Distributed detection

DD [12, 13, 14] in sensor networks gathers local outputs
of multiple detectors to detect a signal. Here we consider
simple DD that has detectors working in parallel and de-
cides global output at a data fusion center based on the lo-
cal decisions from each detector as in Fig. 1. We assume
that the local detectors are identical and each detector has
a common signal and independent noise. When the local
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Figure 1: Distributed detection. Simple DD system is com-
posed of multiple local detectors and a data fusion center.

detector output is binary, the input-output rule of the data
fusion becomes a Boolean function.

One of the important issues in sensor networks is opti-
mization of the data fusion rule in the case where the local
detectors are identical [14]. The assumption of identical
detectors is adopted to reduce complexity of design, imple-
mentation and control of sensor networks, both in theory
and practice. In particular, we consider a simple and basic
fusion rule, K-out-of-N rule, i.e. the global decision u0 = 1
if K or more local decisions are equal to 1.

u0 =

{

1, if
∑N

i=1 ui ≥ K,
0, if

∑N
i=1 ui < K.

(3)

K is an integer threshold for the global decision. For each
detector, false alarm probability pF and detection probabil-
ity pD is shown as follows.

pF = p(ui = 1|H0) = p10, (4)

pD = p(ui = 1|H1) = p11. (5)

Unknown hypotheses, H0 and H1 correspond to input 0 and
1, respectively. From false alarm and detection probability
of each detector, we can calculate system false alarm prob-
ability pF and system detection probability pD as follows.

PF =

N
∑

i=K

(

N
i

)

pi
F(1 − pF)N−i, (6)
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PD =

N
∑

i=K

(

N
i

)

pi
D(1 − pD)N−i. (7)

The probability of correct detection with N detectors is as
follows.

Pcor = (1 − PF)p0 + PD p1. (8)

Varshney has examined K-out-of-N fusion rules with iden-
tical detector and obtained the optimal K value to minimize
Bayesian risk [12]. We note that an inhomogeneous sys-
tem in which the threshold value of each detector can be
separately adjusted [17] is a much more difficult problem
especially when the number of sensors is large, requiring
co-optimization of threshold values and K, and is beyond
the scope of this paper.

3.2. Noise-assisted distributed detection

We have explained that noise-assisted DD can be ex-
pected when the detectors have suboptimal thresholds with
respect to the signal and noise [11]. We also have showed
that noise-assisted DD can occur even when the detec-
tors have optimal thresholds, for some types of fusion
rules [15]. Specifically, we have showed an example of
noise-assisted DD which can occur when the fusion rule
is not a monotonic function of the number of detectors.
In practice, this case could occur, for example, when re-
ceiving too many detections from local detectors is judged
by the fusion center to be an indication that local detec-
tors are broken and outputting false detections. This ex-
ample has showed that we can see noise-assisted DD even
when the local detectors have optimal thresholds. Note
that the correctness probability is less for the fusion rule
where noise-assisted detection is observed, than for the fu-
sion rule where noise-assisted detection is not observed. In
this sense, noise-assisted detection occurs for suboptimal
fusion rule.

4. Noise-assisted distributed detection for homoge-
neous thresholds and inhomogeneous signal levels

Here we consider the case where multiple detectors de-
tect signals from the same source, but the level of the signal
at each detector is not the same, for example, it depends
on the distance between the signal source and the detector.
Noise is assumed to be independent but with identical dis-
tribution for each detector. We assume that the threshold
value is the same for all detectors - i.e. it is not possible for
detectors to independently adjust their threshold values.

To be specific, we assume that the signal level s(r) de-
pends on the distance r between the signal source and a
detector. The signal level varies as s(r) = A exp(−kr) with
constant k when s(0) = A. For simplicity, we consider the
sensors are positioned on a one-dimensional line with co-
ordinate x. The signal source is located at x = 0. Detectors

are located at x = . . . ,−2,−1, 0, 1, 2, . . .. We assume that
p0 = p1 = 1/2. The threshold value, which is the same for
all detectors, is taken as A/2, which is the optimal value for
a detector at s(0) = A when p0 = p1 = 1/2. We use K-
out-of-N fusion rule. In this system, the threshold value is
suboptimal for all detectors except detectors with distance
0 and so we can anticipate the possibility of noise-assisted
detection with a normal fusion rule, such as K-out-of-N fu-
sion rule.

Figure 2 shows particular examples of noise-assisted de-
tection as manifest in the variation of correctness probabil-
ity Pcor(σ) as noise intensity σ increases. In this example,
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Figure 2: Dependence of correctness probability Pcor(σ)
on noise intensity σ for a particular system of N = 5 detec-
tors with p0 = p1 = 1/2. The solid line shows when K = 2,
and the dotted line shows when K = 3.

N = 5 detectors are located at positions x = −2,−1, 0, 1, 2
and the signal source is located at x = 0. The key sig-
nal parameters are k = 1 and A = 1. There is a maximum
value of correctness probability at a non-zero value of noise
intensity. With increase of σ, the correctness probability
Pcor(σ) increases to a maximum and decreases again. We
also can find noise-assisted detection when K = 2, 3, 4. We
cannot see noise-assisted detection in the case of K = 1
as one of the detectors, the one positioned at x = 0 has an
optimal threshold.

Here we assume that the threshold value is the same for
all detectors. We note that noise-assisted detection can also
be expected in the case when the detectors are not identical.
In general, improvement of detection with noise can occur
when the threshold of a detector is not optimal with respect
to the signal level [10, 11]. The optimality of a detector
depends on both the threshold level and the signal level. In
this paper, we assumed identical threshold levels to more
clearly illustrate the effect of inhomogeneous signal levels.
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5. Conclusions

We analyzed DD of a signal in a system where the de-
tection threshold is the same for all detectors, but the level
of the signal is not the same, that is the optimality of the
threshold is not the same. We considerd a standard data
fusion rule, the K-out-of-N fusion rule. We showed that
DD performance can depend non-monotonically on noise
intensity and that performance can be improved with noise
compared to without noise. This shows that the noise inten-
sity can be used to improve the detection performance. This
example shows that in real-world environments, it may be
possible to use control of noise intensity to achieve ade-
quate performance when more optimal techniques, such as
the separate adjustment of many detector threshold values
are not possible or feasible.
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