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Abstract—In neural systems, many complicated behav-
iors are observed. To understand network dynamics, and
reproduce the complicated behavior, it is important to clar-
ify the network structures as well as their dynamics. To re-
solve this issue, we have already proposed a measure, par-
tial spike time metric. Although this measure exhibits high
performance to estimate the network structures, it cannot
evaluate negative correlations correctly. In this paper, to
resolve this problem, we transform multi-spike sequences
into continuous time series to estimate the neural network
structures. As a result, our proposed method is more effec-
tive for estimating neural network structures than the con-
ventional method.

1. Introduction

Neural systems often produce complicated behaviours
due to the interactions among the neurons in them. Usu-
ally, such complicated behaviours depend on how the neu-
rons in the network are connected, that is, they depend on
the network topology. Thus, to analyze, model or predict
such behaviours, it is essential to understand the network
structure as well as their dynamics. However, it is not
so easy to analyze the anatomical structure of the neural
network. On the other hand, recent developments in mea-
surement technologies make it possible to observe multi-
spike sequences. It is intuitive to expect that these observed
spike sequences reflect essential information about the neu-
ral network structure. From this point of view, we have al-
ready proposed a measure based on spike time metric [1]
and partialization analysis [2, 3]. Although this measure,
the partial spike time metric coefficient (PSTMC), exhibits
high performance to estimate the network structure [4, 5],
it has a drawback: if two spike sequences have anti-phase
relation, the PSTMC cannot detect the relation correctly. In
this paper, to resolve this issue, we introduce a new strat-
egy: we transform spike sequences into continuous time se-
ries to detect their relation. To transform spike sequences
to continuous time series, we applied two methods. The
first method is an interpolation of inter-spike intervals by
sinusoidal waves. The second is a kernel density estima-
tor which uses the Gaussian function as a kernel function.
We applied the analytical results for calculating an optimal

width of the kernel function [6]. Then, we applied the par-
tial correlation analysis to the transformed continuous time
series. The results show that our method exhibits higher
performance than the conventional method [4, 5].

2. Transformation method

We first transform spike sequences into continuous time
series. To transform the spike sequences, we applied two
transformation methods.

2.1. Method 1: Interpolation of inter-spike intervals by
sinusoidal waves

Let us describe thejth spike in theith spike sequence
as ti

j. Then, theith spike sequence is described assi =

{ti
1, t

i
2, . . . , t

i
li
} whereli is the last index ofsi. Firstly, we in-

terpolate thejth segment (inter-spike interval, ISI) bounded
by two adjacent spikes,ti

j andti
j+1, by the following equa-

tion:
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whereT i
j = ti

j+1 − ti
j. Then,xi

j(t) ( j = 1,2, . . . , li−1) is con-
catenated to produce a transformed continuous time series
from the ith spike sequence. In Fig. 1, a spike sequence
and corresponding transformed continuous time series are
shown.
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Figure 1: Example of transformation of a spike sequence
into a continuous time series by the method 1. Blue lines
indicate spike timings and the red curve indicates trans-
formed continuous time series.
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2.2. Method 2: The Kernel density estimator

In method 2, we transformed continuous time series
from spike sequences by using the kernel density estima-
tor. We used the Gaussian function as the kernel function.
The kernel density function is described by the following
equation:

f i
K(t) =

1
liw

li
∑

j=1

K

( t − ti
j

w

)

. (2)

wherew is the band width andK(·) is the kernel function.
The Gaussian function with mean zero and variance unity
as a kernel function is defined as:

K(t) =
1
√

2π
e−

1
2 t2
. (3)

In Fig. 2, an observed spike sequence and corresponding
transformed continuous time series are shown. Here, the
bandwidthw used for the kernel estimation is optimized by
the method for selecting a fixed kernel bandwidth [6].
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Figure 2: Example of transformation of a spike sequence
into a continuous time series by the method 2. Blue lines
indicate spike timings and the red curve indicates trans-
formed continuous time series.

3. Partial correlation coefficient

We used the partial correlation coefficient [7, 8] to the
transformed continuous time series to detect the relation
between two neurons. The partial correlation coefficient is
defined as:

ri j = −
σi j
√
σiiσ j j

, (4)

whereσi j is the (i, j)th entry of the inverse of the correla-
tion matrix of the transformed time series from theith and
jth spike sequences. The partial correlation coefficient can
quantify the similarity between the two time series with re-
moving spurious correlations between them, for example,
in a case that two neurons are driven by a common input
from another neuron [4, 5].

4. Simulation

To evaluate the validity of our method, we used a neu-
ral network constructed from a mathematical model of the

Izhikevich simple neuron model [10] and generated multi-
spike sequences. The dynamics of theith neuron in the
neural network is described by the following equations:

v̇i = 0.04v2
i + 5vi + 140− ui + Ii,

u̇i = a(bvi − ui),

if vi ≥ 30 [mV], then

{

vi ← ci

ui ← ui + di

wherevi is the membrane potential,ui is the membrane
recovery variable; anda, b, ci, anddi are dimensionless pa-
rameters. We seta = 0.02, b = 0.2, ci = −65+ 15× U2,
di = 8 − 6 × U2 whereU is uniform random numbers be-
tween [0,1]. The variableIi is the sum of the external and
synaptic inputs from coupled neurons. The synaptic weight
is set to six and the amplitude of the external inputs to five
times G, whereG is a Gaussian random number with a
mean value and standard deviation of zero and unity, re-
spectively. The neural network is composed of only excita-
tory neurons. For the sake of simplicity, we do not consider
conduction delays.

We generated a complex network structure having a reg-
ular ring topology with 100 neurons by a random rewiring
of the synaptic connections between neurons in the same
manner as that described in Ref. [12]. We set the parame-
tersk (the number of edges in the regular network) to four
andp (rewiring probability) to 0.1.

We conducted numerical experiments according to the
following procedures. First, to generate multi-spike se-
quences, we constructed a neural network using the Izhike-
vich simple neuron model and applied external inputs to
the neural network. Second, we transformed the spike se-
quences into continuous time series. Third, we calculated
the partial correlation coefficient of the transformed contin-
uous time series. If theith and thejth neurons are coupled,
the partial correlation coefficient becomes large. On the
other hand, if these neurons are not coupled, it becomes
small. Finally, we classify coupled pairs and uncoupled
pairs by the Otsu thresholding [11] which is based on a lin-
ear discriminant analysis.

To evaluate an overall estimation accuracy, we compared
the estimated network structure with the true network struc-
ture. For this evaluation, we used the following index:

E =

∑N
i, j(αi jα̃i j + (1− αi j)(1− α̃i j))

N(N − 1)
(5)

whereαi j and α̃i, j are the directional connectivity of the
true network structure and the estimated network structure,
respectively. If theith and jth elements are (estimated to
be) coupled,αi j and α̃i j take a value of unity. If they are
not,αi j andα̃i j take a value of zero. IfE approaches unity,
the estimation accuracy increases.

5. Results and discussions

To compare the proposed methods which transform
spike sequences to continuous time series and the con-
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E = 0.9951
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Figure 3: Histograms of (a) PSTMC in the conventional method[4, 5], partial correlation coefficients by (b) the method
1 and (c) the method 2. The number of neurons is 100. The temporal epoch of spike sequences used for estimation is 50
[s]. Histograms of all of the PSTMC and the partial correlation coefficients are indicated in red, and those of the coupled
elements are superimposed by blue. The black vertical linesshow thresholds decided by the Otsu thresholding. If the
PSTMC and the partial correlation coefficients are less than the threshold, corresponding neurons are classified into the
uncoupled class.
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Figure 4: Estimation accuracyE of the network structure
for rewiring probabilitiesp. The number of neurons, the
temporal epoch and the coupling strength are 100, 50 [s]
and 6. The red line indicates the conventional method, the
green line indicates the method 1 and the blue line indicates
the method 2. Error bars with 20 trials are also provided.

ventional method which uses PSTMC, we also apply the
PSTMC [4, 5] to the same network structure.

Figure 3 shows histograms of PSTMC and partial corre-
lation coefficients. Although the conventional method and
the method 1 can separate coupled and uncoupled pairs of
neurons, a few uncoupled pairs are estimated as coupled
pairs. However, coupled and uncoupled pairs of neurons
are more clearly distinguished by the method 2.

In Fig. 4, we show the results when the rewiring proba-
bility is changed. In the method 1, the estimation accuracy
for the random network (p = 1.0) is low. However, the con-
ventional method and the method 2 show high estimation
accuracy for all rewiring probabilities.

We examined how the estimation accuracy depends on
the temporal epoch for observing spikes (Fig. 5). The
conventional method exhibits higher accuracy than other
methods when the temporal epoch of the spike sequences
is shorter than 20 [s]. However，in method 2, the estima-
tion accuracy is higher than the other methods when the
temporal epoch of the spike sequences is longer than 20
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Figure 5: Estimation accuracyE of the network structure
for several temporal epochs. The number of neurons and
the coupling strength are 100 and 6. Red line indicates the
conventional method, green line indicates the method 1 and
blue line indicates the method 2. Error bars with 20 trials
are also provided. The inset shows an enlargement.

[s].
In Fig. 6, we show the results when the coupling strength

is changed. If the coupling strength becomes larger than
four, the estimation accuracy of the conventional method is
high. If the coupling strength becomes larger than five, the
estimation accuracy becomes higher in the method 2. If the
coupling strength becomes larger than six, the estimation
accuracy of the method 1 is the highest.

In addition, we show the results for different network
sizes (Fig. 7). In the method 1, the estimation accuracy
worsens as the network size increases. However, the es-
timation accuracy in the method 2 and the conventional
method are still high even if the network size is large.

From these results, the estimation accuracy in the
method 2 is better than the other methods. In this neu-
ral network model, we used different dynamics of neurons;
regular spiking, intrinsically bursting, and chattering neu-
rons. If two neurons of different dynamics are coupled, the
correlation between the two transformed continuous time
series decreases in the conventional method [4, 5] and the
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method 1. However, in the method 2, true relation can be
identified if observed spike sequences of two neurons are
transformed with an optimal bandwidth, even though the
dynamics of the two neurons differs.

The proposed methods are similar to the method of
Sameshima and Baccala [14] in the point of transform-
ing spike sequences to continuous time series and us-
ing partialization analysis. However, in the method of
Sameshima and Baccala [14], parameters are not optimized
when spike sequences are transformed. Moreover, the pro-
posed methods can estimate whole network structure, while
the method of Sameshima and Baccala estimate interaction
between two neurons.
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Figure 6: Estimation accuracyE of the network structure
for several coupling strength. The number of neurons and
the temporal epoch are 100 and 50 [s]. Red line indicates
the conventional method, green line indicates the method
1 and blue line indicates the method 2. Error bars with 20
trials are also provided.
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Figure 7: Estimation accuracyE of the network structure
for several network sizes. The temporal epoch and the cou-
pling strength are 50 [s] and 6. The red line indicates the
conventional method, the green line indicates the method 1
and the blue line indicates the method 2. Error bars with 20
trials are also provided.

6. conclusions

In this paper, we proposed new methods for estimat-
ing network structures only from the information of ob-

served multi-spike sequences. We transformed spike se-
quences to continuous time series by two methods and ap-
plied the partial correlation analysis to them. As a result,
method 2 (which used the kernel density estimator) exhibits
higher performance than the conventional method [4, 5]
and method 1.

In this paper, although we only consider the case in
which neurons are compiled without delay, real spike se-
quences can be produced from a network in which the
neurons interact through coupling delays. Thus, in future
works, it is important to treat delays by modifying the es-
timation method of optimized bandwidth. In addition, we
apply the partialization analysis to a different measure, for
example, mutual information [15].
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