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Abstract—In neural systems, many complicated behawwidth of the kernel function [6]. Then, we applied the par-
iors are observed. To understand network dynamics, atidl correlation analysis to the transformed continuomreti
reproduce the complicated behavior, it is important to-classeries. The results show that our method exhibits higher
ify the network structures as well as their dynamics. To reperformance than the conventional method [4, 5].
solve this issue, we have already proposed a measure, par-
tial spike time metric. Although this measure exhibits high
performance to estimate the network structures, it cann@t Transformation method
evaluate negative correlations correctly. In this paper, t
resolve this problem, we transform multi-spike sequences We first transform spike sequences into continuous time
into continuous time series to estimate the neural netwoderies. To transform the spike sequences, we applied two
structures. As a result, our proposed method is mfiexe transformation methods.
tive for estimating neural network structures than the con-

ventional method. . . oo
2.1. Method 1: Interpolation of inter-spikeintervals by

sinusoidal waves

1. Introduction . . L . .
Let us describe thgth spike in theith spike sequence

Neural systems often produce complicated behavioufab?t'j_- Then, theith spike sequence is described sas=
due to the interactions among the neurons in them. Ustiy, . . ...t } wherel; is the last index of. Firstly, we in-
ally, such complicated behaviours depend on how the netﬁfp0|at9 thqth segment (inter-spike interval, 1SI) bounded
rons in the network are connected, that is, they depend &l two adjacent spikes) andt;, ,, by the following equa-
the network topology. Thus, to analyze, model or predidion:
such behaviours, it is essential to understand the network

structure as well as their dynamics. However, it is not  xi(t) = = + }cosz—{r(t—ti’), (t <t< ti'+1)’ (1)
SO easy to analyze the anatomical structure of the neural . 2 2 T} . .

network. On the other hand, recent developments in mea-

surement technologies make it possible to observe multivhereT! = t' t' Then,x () (j=12....li-) s con-

spike sequences. Itis intuitive to expect that these okservcatenated to produce a transformed contrnuous time series
spike sequences reflect essential information about the ndtom theith spike sequence. In Fig. 1, a spike sequence
ral network structure. From this point of view, we have aland corresponding transformed continuous time series are
ready proposed a measure based on spike time metric gjown.

and partialization analysis [2, 3]. Although this measure,
the partial spike time metric céicient (PSTMC), exhibits I
high performance to estimate the network structure [4, 5], &

it has a drawback: if two spike sequences have anti-phase™
relation, the PSTMC cannot detect the relation correctly. |
this paper, to resolve this issue, we introduce a new strat- t

egy: we transform spike sequences into continuous time se-

ries to detect their relation. To transform spike sequencédgure 1. Example of transformation of a spike sequence
to continuous time series, we applied two methods. Thigto a continuous time series by the method 1. Blue lines
first method is an interpolation of inter-spike intervals byindicate spike timings and the red curve indicates trans-
sinusoidal waves. The second is a kernel density estimt@rmed continuous time series.

tor which uses the Gaussian function as a kernel function.

We applied the analytical results for calculating an optima

- 123 -



2.2. Method 2: The Kernel density estimator Izhikevich simple neuron model [10] and generated multi-
spike sequences. The dynamics of ttie neuron in the

n m?“h‘-"d 2, we transfor.med continuous tlme S€M€Reural network is described by the following equations:
from spike sequences by using the kernel density estima-

tor. We used the Gaussian function as the kernel function. Vi = 0.04v2+5v +140-u; + i,
The kernel density function is described by the following u = albv—u),
equation: . _
if v > 30[mV], then{ Vi G
_ 1 & t-t U < Ui +di
fr () = sz K(Tj) (2)  wherey; is the membrane potentialy is the membrane
1

j=1 recovery variable; and, b, ¢;, andd, are dimensionless pa-
rameters. We set = 0.02,b = 0.2,¢ = —65+ 15x U?,
.d = 8- 6x U? whereU is uniform random numbers be-
eren [Q1]. The variabld; is the sum of the external and
synaptic inputs from coupled neurons. The synaptic weight
1 e is set to six and the amplitude of the external inputs to five
K(®) = \/—Ze ’ (3 timesG, whereG is a Gaussian random number with a
mean value and standard deviation of zero and unity, re-
In Fig. 2, an observed spike sequence and correspondisgectively. The neural network is composed of only excita-
transformed continuous time series are shown. Here, tiery neurons. For the sake of simplicity, we do not consider
bandwidthw used for the kernel estimation is optimized byconduction delays.
the method for selecting a fixed kernel bandwidth [6]. We generated a complex network structure having a reg-
ular ring topology with 100 neurons by a random rewiring
of the synaptic connections between neurons in the same
manner as that described in Ref. [12]. We set the parame-
U tersk (the number of edges in the regular network) to four
andp (rewiring probability) to O1.
t We conducted numerical experiments according to the
following procedures. First, to generate multi-spike se-
Figure 2: Example of transformation of a spike sequencgyences, we constructed a neural network using the Izhike-
into a continuous time series by the method 2. Blue linegch simple neuron model and applied external inputs to
indicate spike timings and the red curve indicates trangnhe neural network. Second, we transformed the spike se-
formed continuous time series. guences into continuous time series. Third, we calculated
the partial correlation cdgcient of the transformed contin-
uous time series. If thieh and thejth neurons are coupled,
the partial correlation cdicient becomes large. On the
3. Partial correlation coefficient other hand, if these neurons are not coupled, it becomes
small. Finally, we classify coupled pairs and uncoupled
airs by the Otsu thresholding [11] which is based on a lin-
r discriminant analysis.
To evaluate an overall estimation accuracy, we compared

as a kernel function is defined as:

f(®)

We used the partial correlation déeient [7, 8] to the
transformed continuous time series to detect the relati
between two neurons. The partial correlationfiognt is

defined as: the estimated network structure with the true network struc
_— Tij @) ture. For this evaluation, we used the following index:
j == ———>
T E - Thilaijaij + (1 - ai))(1 - &j)) )
wherea; is the {, j)th entry of the inverse of the correla- - N(N - 1)

tion matrix of the transformed time series from ftieand  whereq; ; anddi ; are the directional connectivity of the
jth spike sequences. The partial correlationfitoent can  trye network structure and the estimated network strugture
quantify the similarity between the two time series with rerespectively. If thdth and jth elements are (estimated to
moving spurious correlations between them, for examplge) coupledgij anddi; take a value of unity. If they are
in a case that two neurons are driven by a common inpybt, ai; anddi; take a value of zero. [E approaches unity,
from another neuron [4, 5]. the estimation accuracy increases.

4, Simulation 5. Resultsand discussions

To evaluate the validity of our method, we used a neu- To compare the proposed methods which transform
ral network constructed from a mathematical model of thepike sequences to continuous time series and the con-
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Figure 3: Histograms of (a) PSTMC in the conventional metlod], partial correlation cdécients by (b) the method

1 and (c) the method 2. The number of neurons is 100. The teahgpoch of spike sequences used for estimation is 50
[s]. Histograms of all of the PSTMC and the partial corr@atcodficients are indicated in red, and those of the coupled
elements are superimposed by blue. The black vertical Bhesv thresholds decided by the Otsu thresholding. If the
PSTMC and the partial correlation d&eients are less than the threshold, corresponding neurendassified into the
uncoupled class.
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Figure 4: Estimation accurady of the network structure Figure 5: Estimation accurady of the network structure
for rewiring probabilitiesp. The number of neurons, the for several temporal epochs. The number of neurons and
temporal epoch and the coupling strength are 100, 50 [#je coupling strength are 100 and 6. Red line indicates the
and 6. The red line indicates the conventional method, thmnventional method, green line indicates the method 1 and
green line indicates the method 1 and the blue line indicatédue line indicates the method 2. Error bars with 20 trials
the method 2. Error bars with 20 trials are also provided. are also provided. The inset shows an enlargement.

ventional method which uses PSTMC, we also apply thgs].
PSTMC [4, 5] to the same network structure. In Fig. 6, we show the results when the coupling strength

Figure 3 shows histograms of PSTMC and partial corres changed. If the coupling strength becomes larger than
lation codficients. Although the conventional method andour, the estimation accuracy of the conventional method is
the method 1 can separate coupled and uncoupled pairshigh. If the coupling strength becomes larger than five, the
neurons, a few uncoupled pairs are estimated as couplestimation accuracy becomes higher in the method 2. If the
pairs. However, coupled and uncoupled pairs of neuror®upling strength becomes larger than six, the estimation
are more clearly distinguished by the method 2. accuracy of the method 1 is the highest.

In Fig. 4, we show the results when the rewiring proba- In addition, we show the results forftérent network
bility is changed. In the method 1, the estimation accuracsizes (Fig. 7). In the method 1, the estimation accuracy
for the random networki = 1.0) is low. However, the con- worsens as the network size increases. However, the es-
ventional method and the method 2 show high estimaticimation accuracy in the method 2 and the conventional
accuracy for all rewiring probabilities. method are still high even if the network size is large.

We examined how the estimation accuracy depends onFrom these results, the estimation accuracy in the
the temporal epoch for observing spikes (Fig. 5). Thenethod 2 is better than the other methods. In this neu-
conventional method exhibits higher accuracy than otheal network model, we usedftierent dynamics of neurons;
methods when the temporal epoch of the spike sequenaegular spiking, intrinsically bursting, and chatteringun
is shorter than 20 [s]. Howeverin method 2, the estima- rons. If two neurons of dierent dynamics are coupled, the
tion accuracy is higher than the other methods when therrelation between the two transformed continuous time
temporal epoch of the spike sequences is longer than 26ries decreases in the conventional method [4, 5] and the
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method 1. However, in the method 2, true relation can bgerved multi-spike sequences. We transformed spike se-
identified if observed spike sequences of two neurons aggiences to continuous time series by two methods and ap-
transformed with an optimal bandwidth, even though thelied the partial correlation analysis to them. As a result,
dynamics of the two neuronsftirs. method 2 (which used the kernel density estimator) exhibits
The proposed methods are similar to the method dfigher performance than the conventional method [4, 5]
Sameshima and Baccala [14] in the point of transformand method 1.
ing spike sequences to continuous time series and us-In this paper, although we only consider the case in
ing partialization analysis. However, in the method ofvhich neurons are compiled without delay, real spike se-
Sameshima and Baccala [14], parameters are not optimizgdences can be produced from a network in which the
when spike sequences are transformed. Moreover, the preeurons interact through coupling delays. Thus, in future
posed methods can estimate whole network structure, whileorks, it is important to treat delays by modifying the es-
the method of Sameshima and Baccala estimate interactitimation method of optimized bandwidth. In addition, we
between two neurons. apply the partialization analysis to af@irent measure, for

) example, mutual information [15].
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