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Abstract– Bifurcations, Basins and orbits in the 

complex Logistic map whose parameter is forced into 

periodic varying are investigated. From the investigation 

of bifurcations in the system, combinations of parameters 

where solutions coexist are observed. From the 

investigation of Basins, coexisting orbits are clarified. 

Additionally, fractals are confirmed. From the 

investigation of orbits, chaotic orbits which have 

imaginary value are confirmed. 

 

1. Introduction 

Chaos is an unpredictable movement that is derived from 

deterministic nonlinear equations, and it was discovered 

by the progress of numerical calculations [1]. Chaos is 

caused in nonlinear systems and it has characteristics such 

as initial value acuity or strange attractor.  It is commonly 

found in nature systems and studied in several research 

fields [2]-[5]. Most nature systems are the nonlinear 

systems, and they have possibilities to cause unpredictable 

behavior. The nonlinearity makes nature behavior difficult 

to predict. That can be seen in the movement of the falling 

leaves, flow of water and earthquake. So in order to 

clarify the nature behavior and solve the unpredictable 

problems, it is important to study the nonlinear systems, 

especially which are chaotic systems. The nonlinear 

systems can be separated to autonomous nonlinear 

systems and non-autonomous nonlinear systems. We are 

interested in the non-autonomous systems whose 

parameters are oscillatory forced. The parametrically 

forced systems are still not investigated well, whereas the 

systems whose state values are forced by external periodic 

waves are well investigated and many interesting and 

complicated phenomena are observed in the systems. The 

Duffing Oscillator whose state value is forced by external 

sine wave is well known as a non-autonomous nonlinear 

system and investigated and is analyzed by many 

researchers. On the other hand, the parametric forcing 

almost causes periodic oscillation and chaos in a simple 

oscillator [6]-[8]. The parametric forcing can make 

structures to unpredictably oscillate and is suggested to 

lead to the destruction of buildings like Tacoma Narrows 

Bridge [9]. The purpose of this study is the investigation 

into influences of periodic parameter change to an 

asymmetry two-dimensional nonlinear discrete time 

system. The asymmetry two-dimensional nonlinear 

discrete time system is the nonlinear system which is 

consist of two asymmetric equations. In this study, a 

complex Logistic map is used as the asymmetry two-

dimensional nonlinear discrete time system. In order to 

investigate the influences of periodic parameter change, a 

parameter of the complex Logistic map is forced into 

periodic varying.  

In this study, we investigate the complex Logistic map 

including periodic parameter perturbation. From the 

investigation of bifurcations, basins and orbits, interesting 

and characteristic phenomenon are confirmed. 

 

2. Parametrically Forced Complex Logistic Map 

Complex Logistic map is a Logistic map extended with 

complex numbers of state values, and is described as; 

 

 
 

In order to investigate the influence of periodic 

parameter change, the parameter of the complex Logistic 

map is forced into periodic varying. The parametrically 

forced complex Logistic map is described as; 

 
and 

 
 

The system is investigated according to the following 

procedure. First, bifurcations in the system are 

investigated to confirm existence of coexisting solutions 

by comparing some bifurcation diagrams which have 

different initial values. Next, basins of the system are 

investigated to clarify coexisting solutions for several 

parameter sets. And then, orbits of the coexisting solutions 

are investigated. 
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3. Bifurcations 
Fig. 1 (a) shows an example of a bifurcation diagram of 

the system. Fig. 1 (b) shows the relationship between 

periods of solutions and colored area in the bifurcation 

diagram. The white colored area represents divergence of 

solutions. The other areas represent convergence of 

solutions. The difference in colors relates to periods of 

solutions. Solutions are regarded as divergence when the 

solutions )(nx  are greater than 100 because in this case, it 

is unlikely that )(nx  becomes more than 100 if Solutions 

converge to a certain value. This condition is reasonable.  

 

 
The general Logistic map has solutions between 0 and 1. 

If )(nx  are greater than 1, )( mnx   tend toward infinity, 

where m is counting number. Therefore, when )(nx  

become quite large in the system, the solution diverges to 

infinity. Solutions do not have possibility to converge to a 

periodic cycle or chaos when the solutions are greater than 

100. Panels in Fig. 2 show bifurcation diagrams when 

different initial values are set. Comparing the figures, 

different colored area can be seen. These areas imply 

possible existence of coexistence of solutions. 

 

4. Basins 

Basin is a diagram that shows how the initial values 

converge to any orbit when parameter value is decided in 

one set. Fig. 3 shows an example of the basin. The 

meaning of colored domain corresponds to Fig. 1 (b). The 

condition deciding divergence is the same as the 

investigation of the bifurcation. From the investigation of 

the basin, several patterns of basins that may include 

chaos can be confirmed. Fig. 4 shows an example of that. 

Fig. 5 shows an enlarged view of a portion that chaos may 

occur. The black parts of the figure may include the 

portion of chaotic. Also, Self-similar fractal forms as 

shown in Fig. 6 and 7 are found. 

 

5. Orbits 

In black colored areas in bifurcation diagrams and basins, 

the solution has more than 16 cycles. And these areas 

contain the chaos that does not have a periodic solution. 

To clarify the chaos occurrence, return maps are 

investigated on association with the bifurcations and the 

basins. Fig. 8 shows the orbit when the chaos does not 

occur and Fig. 9 shows the orbit when chaos occurs. 

When the chaos does not occur, orbit is converged to 

countable point as shown in Fig. 8. In contrast, when 

chaos occurs, the orbit has a complex shape because the 

solution does not converge to a periodic cycle. In the both 

case of Fig. 8 and Fig. 9, imaginal values )(ny  are 0. 

Orbits whose )(ny  are 0  can be seen in much parameter  

 

Figure 3: An example of a basin. 
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Figure 1: Bifurcation diagram. (a)A bifurcation 

diagram for the complex Logistic map 

including periodic parameter perturbation. 

(b)Correspondence of the periods of orbits 

and color. 

 

(x1=0.18，y1=0.22)(x1=0.08，y1=0.15)

Solution cycle changes

 
( 15.0)0(,08.0)0(  yx )    ( 22.0)0(,18.0)0(  yx ) 

Figure 2: Changes due to the initial value.  
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space and phase space. These orbits are also general in the 

general complex Logistic map. However, chaos which has 

imaginary values is confirmed in the system as shown in 

Fig. 10. This cannot be seen in the general complex 

logistic map. The chaos including imaginary value is 

generated by the periodic force.  

 

6. Conclusion 

In this study, we investigated bifurcations, basins and 

orbits in the complex Logistic map whose parameter is 

forced into periodic varying. From the investigations of 

the bifurcations and the basins, coexistence phenomena 

which are generated by the periodic perturbation of the 

parameter are confirmed. Additionally, fractals are found 

in the basins. From the investigation of the orbits, chaotic 

orbits including imaginary value are confirmed. These 

orbits are only confirmed in the system. 
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Figure 6:  Fractal (1).  

( 44.3,60.1 21   ) 

 

 
Figure 7:  Fractal (2). 

( 44.3,60.1 21   ) 

 

Figure 4:  Basin that chaos occurs. 

( 79.1,35.3 21   ) 

 

 

Figure 5: Enlarged view of chaos occurs. 

( 79.1,35.3 21   ) 
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Figure 8: An orbit where chaos does not occur. 

( 10.0)0(,45.0)0(,79.1,35.3 21  yx ) 

 

 
Figure 9: An orbit where chaos occurs. 

( 00.0)0(,10.0)0(,90.2,90.3 21  yx ) 

 

 
Figure 10: Chaos including imaginary values. 

( 10.0)0(,35.0)0(,79.1,35.3 21  yx ) 
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