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Abstract—The Laplacian eigenmap (LEM) is a popu-
larly used graph spectral algorithm for mapping data non-
linearly into a low-dimensional space. In this paper, we ro-
bustify LEM and use it for semi-supervised pattern classifi-
cation. The distance metric for feature vectors is modulated
with a semi-supervised feature selection method and data
are mapped into a low-dimensional classification space
with the robustified LEM. Test data are classified by the
nearest neighbor rule with the modulated distance metric
between data.

1. Introduction

The Laplacian eigenmap (LEM)[1] is a representative
graph-spectral technique for mapping data nonlinearly into
a low-dimensional space. While LEM has been used pop-
ularly for clustering, data visualization and pattern classi-
fication, its weakness lies in the high sensitivity to outlier
data similarly to the principal component analysis (PCA).
Its robustification is desired for enhancing separability be-
tween classes for nonlinearly entangled distribution of data.

The PCA and LEM are unsupervised algorithms for dis-
tance metric learning[2]. The LEM has been extended to
semi-supervised learning where class labels are given only
limited number of data[3]. In the semi-supervised LEM[3],
the distance metric is distorted locally on the basis of label
information of partial data. While this local distortion is
propagated along graph links to unlabeled data, it is diffi-
cult for this method to capture globally consistent distance
metric due to its sensitivity to outlier data.

Alternative to such local metric modulation, if we incor-
porate a semi-supervised metric learning technique giving
a global distance metric into a robustified LEM, we can
obtain a new semi-supervised LEM algorithm with higher
classification rates.

In this paper, we robustify the LEM to which we in-
corporate the semi-supervised feature scoring technique by
Zhao et al.[4] and propose a new semi-supervised pattern
classification method. Robustification enables the LEM to
map data with enhanced separation between classes. This
enhancement in class separation improves its classification
rate. We verify this improvement with some experiments
for a synthetic toy dataset and real datasets popularly used
for benchmark test of classifiers.

2. Related Works

Robustness has attracted attention in signal processing
and statistical data manipulation.

In image processing, linear filters cannot remove impul-
sive noises nor preserve edges on the boundary between
objects. This is due to their sensitivity to outlier signals.
Their robustification leads to nonlinear filters. The median
filter preserves edges, while more strong nonlinear filters
such as the bilateral filter or the mode filter sharpen the
slope of edges. The edge in signals corresponds to class
boundary between data in pattern classification.

In statistical data analysis, linear methods such as the
least mean square estimation is also sensitive to outliers.
Their robustification leads to nonlinear algorithms such as
the least median of squares estimation.

The graph spectral method is a class of statistical data
analysis techniques. The most popular graph spectral algo-
rithm is the LEM[1] which is used for spectral clustering
of data. The spectral clustering is the “cluster partition”
type algorithm which is sensitive to outlier data. Another
type is the “cluster extraction” algorithm which is robust to
outliers[5].

In this paper, we incorporate the simple trick in the clus-
ter extraction algorithm[5] into the LEM and used it for
semi-supervised pattern classification.

3. Laplacian Eigenmaps

Let there be given m training data of feature vectors fi
from which similarity between data i and j is expressed by

si j = e−α‖ fi− f j‖2 (i, j = 1, ...,m) (1)

3.1. Laplacian Eigenmaps

In the LEM[1], data are mapped to the coordinate x =
[x1, ..., xm]T given by

min xT (D − S)x
subj.to xT Dx = 1 (2)

where S = [si j] is the similarity matrix and D =

diag(d1, ...,dm), di =
∑

j si j. With this mapping, mutually
similar data with large si j are projected close together with
near xi and x j. The solution of eq.(2) is the generalized
eigenvector of Sx = λDx of which principal eigenvector
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with the eigenvalue 1 is constant [1, ..., 1]/
√∑

i di, hence
we discard it and use the eigenvectors from the second to
the (p+1)th when we project the data into a p-dimensional
space. This algorithm is sensitive to outlier data due to
strong homogenization effect of xT Dx = 1 which deals
with all data equally even for outliers.

3.2. Robust Laplacian Eigenmaps

This LEM is an unsupervised algorithm where the dis-
tance between data is Euclidean as is in eq.(1), i.e. ( fi −
f j)T I( fi − f j) where I is the identity matrix. In the semi-
supervised learning, label information is given for some
training data, which induces the modulation of distance
metric into a generalized quadratic form ( fi − f j)T A( fi − f j)
with a metric matrix A with which the similarity si j is mod-
ified to s̃i j = e−α( fi− f j)T A( fi− f j) which enhances class separa-
bility on the basis of label information.

Then a straightforward extension of eq.(2) is mod-
ification of both S and D to S̃ = [s̃i j] and D̃ =

diag(d̃1, ..., d̃m), d̃i =
∑

j s̃i j. This simple scheme, however,
does not work well because the normalization xT D̃x = 1
uniformizes x as mentioned above. This equalization ef-
fect in eq.(2) cancels the enhanced class separability gained
with S̃ and makes the mapping sensitive to outliers and
blurs the boundary between classes.

Hence we preserve D in its unmodified form and pro-
pose, in this paper, to modify eq.(2) into a robust form

max xT (D − S̃)x
subj.to xT Dx = 1 (3)

of which solution is the generalized eigenvector of S̃x =
μDx. Different from eq.(2) of which first eigenvector is
constant and is discarded, the first eigenvector of eq.(3)
is not constant and contains useful information about data
structure. So, we use its eigenvectors from the first to the
pth one for embedding data into p-dimensional space.

Similar trick has been introduced to graph spectral al-
gorithms for clustering data[5]. Eq.(3) is its incorporation
into the semi-supervised LEM. Similar to the robustness
of the clustering algorithm[5], eq.(3) is robust to outliers
hence enhances the boundary between classes. We call this
mapping the Robust Laplacian Eigenmaps (RLEM).

4. Semi-Supervised Feature Selection

In this section, we review the semi-supervised feature
selection method by Zhao et al.[4]. Assume the training
data to be partially labeled. We construct the within class
similarity sw,i j and between class similarity sb,i j as

sw,i j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γ1 i, j ∈ same class
1 i or j is unlabeled and

i ∈ kNN( j) or j ∈ kNN(i)
0 otherwise

(4)

sb,i j =

{
γ2 i, j ∈ different classes
0 otherwise (5)

where kNN(i) is the set of k nearest neighbors of i. We set
k = 5 in the following experiments.

We next construct the within class Laplacian matrix Lw

and the between class Laplacian matrix Lb as

Lw = Dw − S w

Lb = Db − S b
(6)

where Dw=diag(dw,1, ..., dw,m)，dw,i =
∑

j sw,i j and
Db=diag(db,1, ..., db,m)，db,i =

∑
j sb,i j.

We finally compute the importance score of each fea-
ture. Let the feature be an n-dimensional vector fi =
[ f1i, ..., fni]T . We define the vector of the r-th feature as
gr = [ fr1, ..., frm]T from which the score is computed by

Lr =
gT

r Lbgr

gT
r Lwgr

(r = 1, ..., n) (7)

which is large for an important feature similarly to Fisher’s
discriminant criterion. Zhao et al.[4] select the features
with Lr greater than a threshold and called this technique
the Locality Sensitive Discriminant Feature (LSDF).

5. Semi-Supervised Pattern Classification

We incorporate this LSDF into the RLEM in section 3.2.
Since the LSDF gives the score of each feature, we restrict
the metric matrix A diagonal and set it as A = L2 where
L = diag(L1, ..., Ln) with the LSDF score Lr, that is, we
modify the similarity in eq.(1) to

s̃i j = e−α( fi− f j)T L2( fi− f j) (8)

where we set Lr below a threshold to 0.
As was mentioned in section 3.2, we construct the sim-

ilarity matrix S̃ in eq.(3) from these modified s̃i j, while
maintaining the matrix D in the original form calculated
from the unmodulated similarity in eq.(1).

We map the training data with this RLEM into (c − 1)-
dimensional classification spaces where c is the number of
classes.

Our proposed technique is summarized as
Step 1: We compute the original similarity si j= e−α2‖ fi− f j‖2

and construct D = diag(d1, ..., dm), di =
∑

j si j.
Step 2: We compute the feature score Lr with the LSDF in
section 4 and construct L = diag(L1, ..., Ln).
Step 3: We compute the modified similarity s̃i j =

Figure 1: Synthetic data.
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(a) LEM (b) SemiLEM

(c) LSDF+LEM (d) LSDF+RLEM

Figure 2: Mapped data.

Table 1: Error rates for test data.

　　　　　　　　 　 test error(%)　　
LEM 18.75

semiLEM 17.50
LSDF 33.75

LSDF+LEM 33.75
LSDF+RLEM 0

e−α1( fi− f j)T L2( fi− f j) and construct S̃ = [s̃i j].
Step 4: We execute the RLEM in section 3.2 and compute
the eigenvectors from the first to (c − 1)th one.
Step 5: We map every training datum into (c − 1)-
dimensional space and we label all the unlabeled data
by the nearest neighbor rule with the weighted distance
( fi − f j)T L2( fi − f j) to labeled data.

This finishes the learning phase where all training data
are labeled. In a test phase, we classify test data by the
nearest neighbor rule with the weighted distance between
test data and all the training data.

6. Experiments

We compare the performance of the proposed method
LSDF+RLEM with LEM[1], semi-supervised LEM
(SemiLEM)[3], LSDF[4] and LSDF+LEM. In each
method, we adjust their parameters to the value with their
best performance.

6.1. Synthetic Data

We firstly experiment with the data in Fig.1 which in-
cludes 3 classes. Data are arranged on three straight lines.
Two horizontal lines are composed of 40 data points and
the central inclined line includes 80 points. At each line,
data are separated into the training and test data interleav-
ing one by one. Only sampled training data are plotted in

Table 2: Data configuration.

dataset dim. class data labeled test
iris 4 3 150 9 60

liver 6 2 345 6 173
iono. 34 2 351 6 176
vote 16 2 435 6 218
crx 15 2 690 6 345

Figure 3: LSDF score for iris dataset.

Fig.1 where the large marks at the left, right and bottom
ends are labeled data which exist only one in each class.

Mapped training data are shown in Fig.2 where▲ and＊
are two horizontal line classes in Fig.1 and● is the center
slant line class. The proposed method succeeds to separate
three classes while they are glued together in other meth-
ods. We verify with this figure that the RLEM in section
3.2 is efficient for enhancing the separation of classes and
hence improve the classification rate. The error rates for
test data are shown in table 1 where our proposed method
(LSDF+RLEM) can classify test data perfectly. Note that
no improvement is gained by the combination of LSDF and
LEM. Thus the proposed robustification for the LEM in
section 3.2 is essential for the classifier.

6.2. Real Data

We next experiment with five datasets: iris, liver, iono-
sphere, vote and crx in the UCI benchmark data[6] popu-
larly used for testing the performance of classifiers. Their
data configuration is shown in table 2.

6.2.1. Feature Score

We firstly examine the feature score in the LSDF for the
iris dataset which includes four features: sepal length, sepal
width, petal length and petal width. Their LSDF scores
are 2.13, 0.18, 4.16 and 3.90 as is shown in Fig.3 where
■ marks on the third (petal length) and the fourth feature
(petal width) denotes that the classification rate is highest
when we select these two features, i.e. set L1 and L2 to
zero.

Mapped training data are shown in Fig.4 where four
cases of combination of features are examined in the order
of value of Lr: (1) only 3rd feature, (2) 3rd and 4th features,
(3) 3rd+4th+1st features and (4) all 3rd+4th+1st+2nd fea-
tures. In Fig.4, labeled data are shown with large marks.
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(a) only 3rd (b) 3rd+4th

(c) 3rd+4th+1st (d) 3rd+4th+1st+2nd

Figure 4: Mapped iris data.

Table 3: Error rates for each combination of features.

combination　 　 test error(%)　　
only 3rd 5.00
3rd+4th 1.67

3rd+4th+1st 8.33
3rd+4th+1st+2nd 11.67

Class separation is largest in Fig.4(b), i.e. selection of the
3rd and the 4th features is the best.

The error rates of test data are shown in table 3 for these
feature combinations. Coincident with the result of Fig.4,
the classification rate is highest when the 3rd and the 4th
features are selected. This superiority of the 3rd and the
4th features is the well known fact for the iris dataset.

The LSDF scores in other four datasets are shown in
Fig.5 where■ marks denote the best selection of features
similarly to Fig.3.

6.2.2. Classification Rates

The error rates of five algorithms for these iris, liver,
ionosphere, vote and crx datasets are shown in table 4.
We use the selected features marked with ■ in Fig.3 and
Fig.5. The classification rate of the proposed method
(LSDF+RLEM) is highest among these methods.

7. Conclusion

We have presented a robust graph spectral method where
the semi-supervised feature scoring technique by Zhao et
al. is incorporated into the Laplacian eigenmaps. Theo-
retical elaboration of the proposed method is a subject of
future researches.

(a) liver (b) ionosphere

(c) vote (d) crx

Figure 5: LSDF scores.

Table 4: Error rates for UCI benchmark datasets.

test error iris liver iono. vote crx
LEM 3.33 49.71 36.36 15.14 32.75

SemiLEM 3.33 49.13 32.95 15.14 32.46
LSDF 3.33 39.31 18.75 14.22 33.91

LSDF+LEM 3.33 37.57 32.95 14.22 33.62
LSDF+RLEM 1.67 35.84 16.48 11.93 27.83
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