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Abstract—Advances in imaging technology now pro-
vide us with detailed 3D data on gene expression patterns in
developing embryos. This information can be used to build
predictive mathematical models of embryogenesis. Cur-
rent modelling approaches are, however, limited by lack
of methods to automatically infer the regulatory networks
and the parameter values from the image-based informa-
tion. Here we make a first step to the development of such
methods. We use limb bud development as a model system.
For a given regulatory network we developed a decision
tree based algorithm to automatically determine parameter
values for which the model reproduces the expression pat-
terns. Starting from this parameter set, local optimization
was performed to further reduce the chosen goodness-of-fit
measure. This approach allowed us to recover the target
expression patterns, as judged by eye, and thus provides
a first step towards the automated inference of parameter
values for a given regulatory network.

1. Introduction

Developmental processes are controlled by complex reg-
ulatory networks. Decades of genetic experiments have de-
fined the core regulatory proteins for most developmental
processes and many regulatory links. The resulting reg-
ulatory networks are complex and the regulatory interac-
tions change dynamically as the embryo is developing. As
a consequence, our understanding of the regulatory logic
that controls patterning in time and space remains limited.
Mathematical modelling offers the opportunity to integrate
the experimental information into a consistent framework
and to define the underlying regulatory mechanisms [1].

To obtain a mathematical model with predictive value
the model must be firmly rooted in experimental data.
Available experimental data mainly consists of images that
show the spatial distribution of mRNAs as a measure of
gene expression at the different stages of development.
This information is not quantitative, but provides a qual-
itative indication of expression patterns. Current models
of the spatio-temporal processes in the embryo are largely
hand-tuned to reproduce the experimental data both in wild
type and mutants [2]. Computational methods are largely
missing for the image-based inference of the the biological
network architecture and the parameter values, even though

Figure 1: The Limb Bud Model System. (a) Subdomains of
the limb bud: mesenchyme (red), apical ectodermal ridge
AER (blue) and additional ectoderm (green). (b) The core
network of regulatory interactions. (c) In silico generated
expression patterns using parameter values in table 1, rep-
resenting the experimentally observed patterns.

methods for the estimation of parameter values for partial
differential equation (PDE) models have been established.
An important limitation are the higher computational costs
for the simulations, which renders many approaches com-
putationally infeasible for models of organogenesis. Here,
we will focus on a model for mouse limb bud development
to illustrate the challenges in inferring parameter values
from the available data.

Limb buds grow out of the flank at about day 9 of mouse
embryonic development [3]. Importantly, the limb bud
consists of different tissue domains, and the expression of
some of the proteins is restricted to particular subdomains,
i.e. to either the mesenchyme (Fig.1a, red part), the api-
cal ectodermal ridge (AER) (Fig.1a, blue part) or the ecto-
derm (Fig.1a, green and blue part). We will focus on the
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early regulatory interactions, and we will thus restrict our-
selves to the core regulatory interactions between fibrob-
lastic growth factor (FGF) 10, WNT3, FGF8 and BMP.
Decades of experiments have defined the core regulatory
interactions (Fig.1b). Thus, WNT2B from the flank in-
duces the expression of Fgf10 in the mesenchyme. FGF10
signalling induces the expression of Wnt3 in the ectoderm.
WNT signalling is necessary for the development of the
AER, which expresses Fgf8 and other Fgfs. FGF8 dif-
fuses into the mesenchyme and maintains the expression
of Fgf10. FGF8 together with WNT3 also induce the ex-
pression of Bmps and BMPs supports the development of
the AER.

In the following, we will build a mathematical model
that represents these regulatory interactions. The focus will
then be on the inference of the parameter values. To test the
approach we will use simulated in silico data rather than
experimental gene expression data as obtained from in situ
hybridisation.

2. Results & Discussion

2.1. The Model

To keep the computational costs to a minimum we will
limit ourselves to a 2D limb bud domain (Fig 1a). To simu-
late the regulatory network (Fig.1b) with n components on
a limb bud domain we use a set of coupled partial differen-
tial equations of reaction-diffusion type, i.e.

∂ci

∂t
= Di∆ci + R(c1, . . . , cn) (1)

where ci denotes the concentration of species i, with dif-
fusion constant Di and reaction term R(c1, . . . , cn). As
network components we include the morphogens FGF10
(F10), FGF8 (F8), BMP, WNT and the structure AER with
diffusion constant D as well as the respective receptor-
ligand-complexes with FGF10, denoted F10R, with FGF8,
denoted F8R, with BMP, denoted BRa, and with WNT, de-
noted WFZ with diffusion constant DR. The reaction terms
are set to

R(F10) = ρF10 pFGF10 − d F10

+ (1 − 1Mes)(ko f f F10R − konRF10(RTF10 − F10R))

R(F8) = ρF8 pFGF8 − d F8

− 1MeskonRF8(RTF8 − F8R) + 1Mesko f f F8R

R(WNT ) = ρWNT pWNT − d WNT

− konRWNT (RT −WFZ) + ko f f WFZ

R(BMP) = ρBMP pBMP − d BMP

− konRBMP(RTBRa − BRa) + ko f f BRa

R(F10R) = konRF10(RTF10 − F10R) − (ko f f + dF10R)F10R

R(F8R) = konRF8(RTF8 − F8R) − (ko f f + dF8R)F8R

R(WFZ) = konRWNT (RT −WFZ) − (ko f f + dBR)WFZ

R(BRa) = konRBMP(RTBRa − BRa) − (ko f f + dBR)BRa

R(AER) = ρAER

(
1AER

WFZ2

WFZ2+K2
WNT
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BRa2+K2
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)
− dAER

K2
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K2
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(2)

with production terms
pFGF10 = 1

201lowMes + F8R2

F8R2+K2
F8R F10

1Mes

pFGF8 = 1AERAER WFZ2

WFZ2+K2
WNT FGF
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K2
BRi

BRa2+K2
BRi

pWNT = F10R2
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(1Ect + AER1AER)

pBMP =

(
1Mes

F8R2

F8R2+K2
F8R

+ (1 − 1Mes) WFZ2

WFZ2+K2
WNT

)
K2

BRi Bmp

BRa2+K2
BRi Bmp

.

(3)

The indicator function 1X denotes that the correspond-
ing reaction only take place in domain X, as the expres-
sion of the morphogens and receptors is restricted to differ-
ent parts of the limb bud domain. Here, ’lowMes’ denotes
the lower half of the Mesenchyme, ’Mes’ the Mesenchyme,
’Ect’ the Ectoderm, and ’AER’ the AER. To account for the
inhibitory and activating effects on gene expression as dis-
played in the regulatory network (Fig.1b) the model uses
Hill kinetics with maximum production rates ρc and Hill
constants Kxx.

2.2. Parameter Inference

To prepare for the inference of the parameter values, θ,
we first generate in silico data with the parameter set, θ0,
in Table 1. These result in the expression patterns in Fig.
1c. As starting values for parameter inference we then use
diffusion constants (in [µm2h−1]) in Table 1, as their physi-
ological range is typically rather well known. For the other
parameters we set all maximal production rate to 2, all Hill
constants and maximum receptor capacities to 1, and all
binding and degradation rates to 0.01. These initial param-
eter values result in the expressions patterns shown in Fig.
2. Starting from those, we aim at finding a set of param-
eter values, with which we can reproduce the expression
patterns in Fig. 1c.

Quantitative, spatial expression data is currently not
available in the limb bud. Therefore, the model only needs
to match the observed patterns qualitatively. To quantify
the goodness-of-fit of the simulated expression patterns, we
used a mathematical formulation for the constraints that de-
scribe the desired patterns. Thus, based on the image data
we require pFGF10 to be present in the mesenchyme with
a gradient, pFGF8 to be uniformly present in AER, pBMP

to be uniformly present in the ectoderm and AER as well
as in the mesenchyme with a gradient and pWNT to be uni-
formly present in the ectoderm. The absence of WNT and
F8 production in the mesenchyme and (in case of F8) in the
ectoderm is already hard-coded by the indicator-functions
in the PDEs. As the production rates range from 0 to 1 we
choose by eye 0.3 as a threshold for presence, and a penalty
term enforces presence of substance c in domain X, i.e.∫

X
max(0.3 − c, 0)2dµ. (4)

For uniform production, we added the penalty term∫
X

(c −max
X

(c))2dµ. (5)
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Table 1: Parameter set θ0 to generate in silico data

Name Value Description
D 3600 Diffusion constant of proteins
DR 36 Diffusion constant of receptors
ρF8 0.9 max. production rate of FGF8
ρF10 7.2 max. production rate of FGF10
ρBMP 1.8 max. production rate of BMP
ρWNT 1.8 max. production rate of WNT
ρAER 0.36 max. production rate of AER
initF10 0 initial concentration of FGF10
d 0.0036 degradation rate of morphogenes
dAER 3.6 degradation rate of AER
dBR 1.8 degradation rate of WFZ, BRa
dF10R 0.36 degradation rate of F10R
dF8R 0.288 degradation rate of F8R
konR 3.6 on-binding rate to receptors
ko f f 0.0036 off-binding rate from receptors
RT 10 max. capacity of WNT receptor
RTF8 2.5 max. capacity of FGF8 receptor
RTF10 2.5 max. capacity of FGF10 receptor
RTBRa 0.6 max. capacity of BMP receptor
KF8R 0.1 Hill constant
KF8R F10 0.025 Hill constant
KF10R 1 Hill constant
KBRa 0.3 Hill constant
KBRa FGF 0.01 Hill constant
KBRa AER 0.01 Hill constant
KBRa AER1 0.001 Hill constant
KBRi 0.25 Hill constant
KBRi Bmp 0.5 Hill constant
KWNT 0.1 Hill constant
KWNT FGF 0.1 Hill constant
KWNT1 0.001 Hill constant
KWNT Bmp 0.01 Hill constant

The constraint given by a gradient was approximated using
a smoothed step function ϕc(x) in x-direction, i.e.∫

X
(0.3 − c)2

+ϕc(x) + (c − 0.1)2
+(1 − ϕc(x))dµ. (6)

Adding all these constraints provides us with a fitness func-
tion f (θ) as a measure for the goodness-of-fit. For the in
silico generated expression pattern (Table 1) its value is
f (θ0) = 3852, whereas for the initial parameter values in
our optimisation we obtain f (θstart) = 13989. Only the rel-
ative, but not the absolute value of f (θ) matters.

A sensitivity analysis revealed that the expression pat-
terns are sensitive to all parameters except for K BRa AER
and K BRa AER1. The parameters in the model are highly
correlated and the vast dimension of the parameter space
as well as the non-smooth fitness function render standard
optimization methods such as Coordinate Search, gradient-
based methods like SNOPT adjoint method, or random al-
gorithms such as the Particle Swarm Optimization unable

Figure 2: Predicted expression patterns with the initial pa-
rameter values.

to improve the value of the fitness function and to arrive
at a parameter set for which the model reproduces the pat-
terns in Fig. 1c. We note that the repeated simulation of the
PDEs is computationally very expensive.

2.3. A decision tree approach for the sequential infer-
ence of parameter values

To overcome the difficulties described above, we devel-
oped a decision tree that also uses prior knowledge and that
optimises parameter values sequentially given that most pa-
rameter values affect the patterning process only at certain
time intervals. To determine the sequence, in which pa-
rameters are identified, we start with the initial conditions
and the constitutive production rates and check which pro-
duction rates are controlled by those factors that are ini-
tially present, here FGF10 production in the lower part of
the mesenchyme. All production rates except for the direct
downstream targets are set to zero. For each of these steps
only a subset of the original parameters has a direct influ-
ence. This subset is tuned with help of a decision tree that
checks whether the currently considered components are
present in the correct domains. If all important features are
reproduced, the algorithm goes on to check the next com-
ponent activated downstream; if not, the parameters which
have direct influence on the considered feature are doubled
or halved depending on the sign of their influence and then
the procedure of the decision tree in the current step is re-
peated until the constraint is fulfilled or a maximum num-
ber of calls is reached. For the model considered here this
approach results in the steps

1. F10 production→ check F10, F10R
2. F10 and WNT production→ check WNT, WFZ in Ec-

toderm (Ecto)
3. F10, WNT, BMP, AER production → check BMP,

BRa in Ecto, check AER, check WNT, WFZ in Ecto
4. F10, WNT, BMP, AER, F8 production→ check F8,

F8R, check BMP in Mesenchyme, check F10 in Mes-
enchyme

The decision tree for the second step of the algorithm is
illustrated in Fig. 3. Starting with the parameter values
θstart results in a set of parameters θdec, for which the model
yields expression patterns (Fig. 4) close to the original pat-
terns (Fig. 1c), and the fitness function f reduces from
f (θstart) = 13989 to f (θdec) = 5598.
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Figure 3: The decision tree performed by the parameter
inference algorithm in step 2.

2.4. Local optimization with SNOPT

The parameter values recovered from the decision tree
approach are used as initial values to perform local op-
timization using the SNOPT algorithm implemented in
COMSOL 4.4, a gradient-based algorithm that uses se-
quential quadratic programming (SQP) methods and which
requires the least computation time for this problem among
the COMSOL methods. To calculate the gradient, the ad-
joint method was used, as it is most efficient in case of
many parameters. At this step of our approach we com-
pare the optimised patterns (Fig. 5) to the in silico gen-
erated patterns (Fig. 1c) directly, i.e. as objective function
J(θ) we integrate the difference between the in silico gener-
ated expression values and the model output, while adding
scaling factors λi as additional parameters as we aim at re-
producing the patterns and no absolute values, i.e. J(θ) =∫

AER
(pFGF8 − λ1 p̂FGF8)2 dµ +

∫
AER,Ect

(pWNT − λ2 p̂WNT )2 dµ

+
∫

all
(pBMP − λ3 p̂BMP)2 dµ +

∫
all

(pFGF10 − λ4 p̂FGF10)2 dµ
(7)

This formulation allows us to evaluate the recovered pa-
rameter values with statistical measures, i.e. calculate the
profile likelihood. To reduce computational costs we ex-
clude the Hill constants, which are correlated in particular
with expression and decay rates, from the optimization, and
we reduce the accuracy of the simulation. Thereby, we can
reduce the computation time from 24 hours to approx. 2
hours for one optimization. Within 100 iterations the al-
gorithm halves the value of the objective function and re-
covers parameter values θopt with a fitness function value
f (θopt) = 4526 (Fig. 5), reasonably close to the fitness
function value of the target pattern, f (θ0) = 3852 (Fig. 1c).

3. Methods

The model was solved with COMSOL Multiphysics us-
ing the Optimization Toolbox (version 4.4) and the MAT-
LAB Livelink (version 4.3b) as described before [4, 5].

Figure 4: Expression patterns after the decision-tree based
parameter inference.

Figure 5: Expression patterns after the optimization with
SNOPT, using the parameters recovered by the decision
tree algorithm as initial values.
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