2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010 NOLTA

2010

Neuronal Avalanches Induced by Spike-Timing-Dependent Plasticity

Shuhei Ohno™ , Hideyuki Kato" and Tohru Ikeguchi®*

tGraduate School of Science and Engineering, Saitama University
$Brain Science Institute, Saitama University
255 Shimo-okubo, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan
Email:"{oono,kato} @nls.ics.saitama-u.ac.jp, *tohru @ics.saitama-u.ac.jp

Abstract—Recent studies in the neuroscience have re-
ported that neuronal avalanches are observed in cortical
areas of the brain. The neuronal avalanches are consid-
ered as one of the mechanisms of memory functions in
the brain. However, it still remains elusive what is a key
mechanism to produce neuronal avalanches. To solve this
question, we introduce spike-timing-dependent plasticity
(STDP) as a candidate for the mechanism to induce the
neuronal avalanches because STDP constructs functional
cortical circuits. In this paper, based on this idea, we an-
alyzed neuronal activities in networks constructed through
STDP from viewpoints of neuronal avalanche.

1. Introduction

In neural systems, billions of neurons construct neural
networks with synapses. It is generally believed that activ-
ities of the neural networks realize high level brain func-
tions, for example, memories, learning, development and
so on. Synfire chain is characteristic activity of the neural
networks in which synchronous neuronal spikes propagate
spatiotemporally [1]. Recent physiological studies have re-
ported that synfire chains are observed in cultured slices
of neocortex of rat. Distributions of event sizes and dura-
tions in the synfire chains obey a power-law with exponents
—3/2 and -2, respectively [2, 3]. These power-law expo-
nents are also observed in avalanches of snow mountains.
Then the synfire chains with these power-law exponents are
called neuronal avalanches. These power-law exponents
are often reported in nonlinear dynamical systems in a crit-
ical state [4]. The previous studies suggested that the neu-
ronal avalanches may be caused by a critical process which
can optimize information processing [2]. In addition, these
synchronous activity patterns in neuronal avalanches are
not only highly diverse but also repeatable [3]. According
to these properties, it is suggested that neuronal avalanches
play important roles for the brain functions of memory.

Several neural network models have been proposed to
reproduce neuronal avalanche [5]. However, it is unknown
what is a key structure to produce the neuronal avalanches,
and how such structures are induced. It is important to clar-
ify such an issue to understand brain function of memory.

Synaptic connections in neural networks are modified
depending on a relative spike timing between pre- and post-
synaptic action potentials [6]. These synaptic modifica-

tions are called spike-timing-dependent synaptic plastic-
ity (STDP). Neural networks with STDP have been widely
analyzed in the computational neuroscience. The long-
term potentiation (LTP) occurs when a postsynaptic ac-
tion potential arises after a presynaptic action potential,
whereas the long-term depression (LTD) occurs in a case
of the reverse order of action potentials.

It is natural to expect that STDP might be one of the
mechanisms of constructing characteristic structures of the
neural networks and these structures can produce neuronal
avalanches. Based on this idea, in this paper, we analyzed
activities of neural networks with STDP from viewpoints
of neuronal avalanche.

2. Methods

2.1. Neural networks with STDP transformation

In our numerical experiments, we used a neuron model
whose dynamics is represented by 2-dimensional ordinary
differential equations. Dynamics of the ith neuron are de-
fined as follows:

Vi =0.0407 + 5v; + 140 — u; + I(0) + I5(0) + IP(2), (1)
;= a(bv; — u;), 2)

where v; and u; are the membrane potential and the re-
covery variable of the ith neuron, respectively [7]. The
variables 1;""(1), I:?g(t) and I?'(¢) represent sum of synap-
tic inputs, background input and external input to the ith
neuron at time #, respectively. The sum of synaptic inputs
IY"(1) are modeled as: Z]jy gji kot — rﬁ) where N repre-
sents the number of neurons in the network, g ;; represents
a synaptic weight from the jth to the ith neuron, t’; repre-
sents the kth spike time of the jth neuron, and 6(-) repre-
sents the Dirac delta function. If the variable v; reaches
30 [mV], the ith neuron fires and the variables v; and u;
are reset to ¢ and d. For all neurons, we set the param-
eters (b,c) = (0.2,-65). For excitatory neurons, we set
(a,d) = (0.02, 8), while (a,d) = (0.1, 2) for inhibitory neu-
rons. In the experiments, the number of neurons in the
network N = 10,000 in which 4N/5 (= 8,000) neurons
are excitatory and N/5 (= 2,000) neurons are inhibitory.
Each neuron has average M (= 1,000) random connec-
tions to postsynaptic neurons. There are no connections
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Figure 1: An example of network activities after the STDP learning. In this figure, blue regions represent neuronal
avalanches and white regions correspond to blank times. In our analysis, a size of a neuronal avalanche is defined by the
number of spikes included in one blue region. A lifetime of a neuronal avalanche corresponds to duration of the blue

region.

between inhibitory neurons. All pacemaker neurons (see
below) are excitatory. In our neural network, Npy, (= 100)
pacemaker neurons are included. Each pacemaker neuron
has M, (= 65) postsynaptic neurons which are selected
randomly from excitatory neurons except for pacemaker
neurons. In the neural network, synaptic weights from the
Jjth to the ith neurons are modified depending on their ac-
tivities. The synaptic modification by STDP is described
by the following equation [8]:

ti—1t;
Atexp(-——) (t; < 1),
Agji = t}—— t 3)
—ATexp(——) (t; 2 1),
T

where A* (= 0.09) and A~ (= 0.1) are the learning rates of
the LTP and LTD, 7 (= 10 [ms]) is a time constant that de-
termines the exponential decays of the LTP and LTD in Eq.
(3), and #; and ¢; are the firing time of the ith and jth neu-
rons, respectively [8]. In addition, nearest-neighbor spikes
contribute for the long-term synaptic modifications [9].
The STDP learning is applied to only excitatory synapses
from a physiological point of view [10]. The excitatory
synapses are additively modified through STDP, so that we
limit a range of synaptic weights with hard bounds. The
range of synaptic weights is set as gmin < gij < gmax Where
Zmin and gmax are 0 and 10, respectively.

In our simulation, we introduced pacemaker neurons in
the neural network. Although the pacemaker neurons are
generally defined by their intrinsic property to generate
rhythmic bursting activity and found in several brain re-
gions, in our network model, the pacemaker neurons fire
at a constant frequency and are not affected by inputs from
the other neurons. For the pacemaker neurons we always
set I""(r) = 0 and I®'(¢) = 5 in the neuron model we have
already defined in Eq. (1).

2.2. Activities of neural network after STDP transfor-
mation

After the STDP learning for 100 [sec], we simulated
the neural network without pacemaker neurons and STDP.
To drive the neural network, we assumed independent

Poisson-process spike trains as background inputs. We set
the amplitude I:’g(t) = 3.1 [mV] which corresponds to sub-
threshold background input. In addition, we selected an ex-
citatory neuron from the network randomly every 200 [ms]
and apply an external input to the neuron. We set the am-
plitude I?*'(r) = 20 [mV] as a supra-threshold input for
evoking neuronal activities.

We analyze activities of the neural network from view-
points of neuronal avalanche.

2.3. Measures

Figure 1 shows an example of a network activity after
the STDP learning. To characterize the network activi-
ties, we use two measures, sizes and lifetimes of neuronal
avalanches. In this study, we define duration not less than
4 [ms] in which no spikes are emitted as a blank time (white
regions in Fig. 1). The other regions (blue regions in Fig.
1) are regarded as neuronal avalanches. Then, the size of
each neuronal avalanche is the number of spikes in the blue
region and the lifetime is the duration of the blue region.

3. Results

3.1. Probability distributions

The probability distributions of neuronal avalanche size
and lifetime are shown in Fig. 2 when the frequency of
the background inputs is varied from 200 to 400 [Hz].
From Fig. 2, the probability distributions of the neuronal
avalanche sizes exhibit linearity in a log-log scale. The
linearity indicates that the probability distribution obeys
a power law P(s) ~ s%, where s is the size of neuronal
avalanche, P(s) is the probability of size s of the neuronal
avalanche and « is a power-law exponent. In cortical net-
works, it is often observed that the power-law exponent is
—3/2 [2]. Blue lines express the slope of —3/2 in the size
distribution while green lines express the slope of « fitted
by the least square approximation from data.

When we applied background inputs to the network af-
ter the STDP learning at 200 [Hz] (Fig. 2 (a) upper), the
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Figure 2: Size (upper) and lifetime (lower) distributions of neuronal avalanches appeared in the network after the STDP
learning. Blue lines in each plot express a slope of —3/2 in the size distributions and —2 in the lifetime distributions. Green
lines represent slopes of the distributions fitted in the range of 10 < s < 10° for the size distributions and 2 < 7' < 40 [ms]
for the lifetime distributions. The frequencies of background inputs to the network after the STDP learning are at (a) 200,
(b) 300, and (c) 400 [Hz]. These results are averaged for 50 times by changing initial network structure.

probability distribution of the neuronal avalanche size obey
the power law distribution and its power law exponent of
a = —2.086 is smaller than —3/2, which means that large
size neuronal avalanches are rarely observed. On the other
hand, when we applied 400 [Hz] background inputs (Fig.
2 (c) upper), the exponent of @ = —0.884 is larger than
—3/2, which means that large size neuronal avalanches ap-
pear more frequently than the case of 200 [Hz] background
inputs. A cut-off point is around 1,000. When we applied
300 [Hz] background inputs (Fig. 2 (b) upper), the expo-
nent of @ = —1.385 is close to —3/2 up to the cut-off point
around 1, 000, which means that the neuronal activities in
this case shows neuronal avalanches in cortical networks.

In cortical networks, the probability distributions of the
neuronal avalanche lifetime also show linearity in a log-
log scale which means the probability distributions obeys
a power law P(T) ~ TP, where T is the lifetime of
a neuronal avalanche, P(T) is its probability and S is a
power-law exponent. It is often observed that the power-
law exponent is —2 [2]. Blue lines in Fig. 2 indicate
slope of —2 while green lines are fitted results from our
simulation. When we applied 200 [Hz] background in-
puts (Fig. 2 (a) lower), the probability distribution of neu-
ronal avalanche lifetimes shows a power-law distribution.
A slope of § = —2.113 is close to —2 and an exponential
cut-off point is observed around 30 [ms]. These results are
almost the same as those observed in the cortical networks
[2]. When we applied 300 [Hz] background inputs (Fig. 2
(b) lower), the distribution of neuronal avalanche lifetimes

shows B = —0.606. This is lager than —2 and a cut-off
point is observed around 30 [ms]. On the other hand, when
we applied 400 [Hz] background inputs (Fig. 2 (c) lower),
neuronal avalanche lifetimes do not obey power-low distri-
butions. When the lifetimes are from about 10 to 30 [ms],
the slope of the distribution is positive, which means that
the longer avalanches are observed more frequently than
the shorter ones in this lifetime band. From these results,
the probability distribution of neuronal avalanche lifetimes
is sensitive to frequencies of the background inputs.

3.2. Relationship between synaptic connections in an
initial network and activities after the STDP learn-
ing

It is clear that spike propagations are always induced if
neurons directly connected with pacemaker neurons begin
to fire (blue dots in Fig. 3). In contrast, spike propaga-
tions do not occur when the other neurons fire (red dots
in Fig. 3). In addition, neuronal spike propagations oc-
cur only among neurons which are directly connected with
pacemaker neurons (Fig. 3) because they are driven by
the pacemaker neurons during the STDP learning and the
synapses between them are strengthened. It is considered
that after the STDP learning, the synapses between them
are strong enough to cause spike propagations but the oth-
ers are not (Fig. 4).
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Figure 3: A raster plot whose neuron indices are sorted by the firing order. A blue dot represents a spike of a neuron
connected with pacemaker neurons in the initial network structure, and a red dot represents a spike of a neuron not
connected with pacemaker neurons in the initial network structure.

4. Conclusion

In this paper, we analyzed neuronal activities after the
STDP learning from viewpoints of neuronal avalanche. As
a result, the probability distribution of neuronal avalanche
sizes and lifetimes show the power-law whose exponent is
—3/2 and -2, respectively. In addition, we clarified that
the exponents vary depending on the frequency of exter-
nal inputs to the network. If frequencies of external in-
puts are higher, larger sizes and longer lifetimes of neu-
ronal avalanches are more frequently appear. From these
results, it is suggested that exponents of distributions of
the size and the lifetime strongly depend on the frequency
of background inputs. Furthermore, we show how the
neuronal spike propagations occur. In addition, the neu-
ronal spike propagations occur only among neurons which
are directly connected with pacemaker neurons in the net-
work. During the STDP learning, the neurons are driven by
the pacemaker neurons and the synaptic weights between
them are strengthened enough to induce the neuronal spike
propagations. However, neuronal avalanches have another
property; even though observation times of two neuronal
avalanches are different in a few hours, their spatiotempo-
ral patterns are highly correlated [3]. As a future work, we
will investigate the correlation between spatiotemporal pat-
terns of neuronal activities in the network after the STDP
learning.
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