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Abstract—This study investigates quasi-periodic bifur-
cations and Arnol’d resonance webs generated in a cou-
pled delayed logistic map. Because a single delayed
logistic map generates an invariant closed curve corre-
sponding to a two-dimensional torus in vector fields via a
Neimark-Sacker bifurcation, the coupled delayed logistic
map can exhibit an invariant torus corresponding to a three-
dimensional torus in vector fields. The Lyapunov analysis
is conducted, and it is clarified that Chenciner bubbles are
generated by saddle-node bifurcations and Neimark-Sacker
bifurcations. Inevitably, Chenciner bubbles are accompa-
nied with hysteresis.

1. Introduction

The partial and complete synchronizations of three or
higher frequency quasi-periodic oscillations have recently
been studied extensively [1–26]. Vitolo et al. clarified
that two types of bifurcation routes from a two-dimensional
torus to a three-dimensional torus [10] exist. One is a
quasi-periodic Hopf (QH) bifurcation, and the other is a
quasi-periodic saddle-node (QSN) bifurcation. The QH bi-
furcation is also called a quasi-periodic Neimark-Sacker
(QNS) bifurcation [22, 24] because Hopf did not analyze
maps. The Arnol’d resonance web is a phenomenon that
was discovered and defined by Broer et al. [1] in the nu-
merical analysis of a map, where regions generating invari-
ant closed curves (ICCs) corresponding to two-dimensional
tori in vector fields extends in many direction in the invari-
ant torus generating region like a web in a two-parameter
bifurcation diagram.

As far as we know, the web like structure of partial and
complete synchronization regions of a three-dimensional
torus was first experimentally denoted by Linsay and Cum-
ming in 1989 [2] who carried out circuit experiments on
two coupled relaxation oscillators with a periodic forcing.
They introduced the term “fractal devil’s cobweb.” In 1991,
Baesens et al. analyzed torus maps, and introduced the
concept of partial and full mode locking [3], and they called
the complex bifurcation structure mode locking webs.

The bifurcation analysis of Arnol’d resonance webs
have recently been advancing rapidly. The observation
of Arnol’d resonance webs are usually performed by Lya-
punov analysis. Kuznetsov et al. investigated quasi-

Figure 1: One-parameter bifurcation diagram of a delayed
logistic map.

periodic bifurcations generated in maps and ordinary differ-
ential equations by employing an advanced computational
power [6–8, 19]. Kuznetsov et al. analyzed Arnol’d res-
onance webs generating up to five-dimensional tori in a
discrete-time dynamics [6], and Emelianova et al. inves-
tigated ensemble of van der Pol oscillators [8]. Arnol’d
resonance webs in maps have similar aspects to those of or-
dinary differential equations. Furthermore, the Arnol’d res-
onance web is observable in laboratory measurements [21].

In this study, we investigate a bifurcation structure
of Chenciner bubbles [23], which is periodic-solution-
generating region around which two thicker two-torus
Arnol’d tongues intersect. Inevitably, hysteresis is ob-
served around Chenciner bubbles. Our numerical results
show that a two-torus Arnol’d tongue and a periodic so-
lution coexist. We hypothesize that the hysteresis occurs
because of a subcritical Neimark-Sacker bifurcation and a
QSN bifurcations. The image of the bifurcation structure is
illustrated. Furthermore, the complex basin boundaries are
observed between the two-dimensional torus and the peri-
odic solutions. This study is the first report that investigates
hysteresis of Chenciner bubbles.
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Figure 2: Global view of the bifurcation diagram.

2. Two-coupled delayed logistic map and Arnol’d reso-
nance webs

We recall the fundamental properties of the delayed lo-
gistic map. The delayed logistic map is expressed by the
following form:

xn+1 = yn,
yn+1 = Byn(1 − xn).

(1)

This map exhibits an ICC owing to a Neimark-Sacker bifur-
cation. Since it is a simple diffeomorphism, the Neimark-
Sacker bifurcation point is manually calculated, and it oc-
curs at B = 2. Figure 1 shows the one-parameter diagram.

In this study, we analyze a coupled delayed logistic map
in the following form:

xn+1 = yn,
yn+1 = B1yn(1 − xn) + ε1wn

zn+1 = wn,
wn+1 = B2wn(1 − zn) + ε2yn.

(2)

Since Eq. (1) generates a Neimark-Sacker bifurcation at
B = 2, Eq. (2) generates an invariant torus near B1 ≃ 2
and B2 ≃ 2 if ε1 and ε2 are sufficiently small.

The procedure in deriving the Lyapunov exponents are
as follows.

λ1 ≃
1
N

M+N∑
j=M+1

ln ||DF je
j
1||,

λ1 + λ2 ≃
1
N

M+N∑
j=M+1

ln ||DF je
j
1 × DF je

j
2||,

λ1 + λ2 + λ3 ≃
1
N

M+N∑
j=M+1

ln ||DF je
j
1 × DF je

j
2 × DF je

j
3||,

λ1 + λ2 + λ3 + λ4 ≃
1
N

M+N∑
j=M+1

ln ||DF je
j
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j
2 × DF je

j
3 × DF je

j
4||,

(3)

Figure 3: Magnified view of Fig. 2.

where DF j is a Jacobian matrix of F on F j and ei (i =
1, 2, 3, and 4) are orthonormal bases obtained by the pro-
cedure in Ref. [27]. We use sufficiently large M and N.
In actual calculation, we employ M = 1, 000, 000 and
N = 1, 000, 000, and we consider that λi is perceived as
exact zero if the following inequality holds:

λi = 0 if |λi| <
1

100, 000
. (4)

In the following discussion, we set ε1 = 0.01 and
ε2 = 0.02. Figure 2 shows a global bifurcation diagram
around B1 ≃ 2 and B2 ≃ 2, which is obtained via Lya-
punov analysis presented in Ref. [27]. In the figure, black,
blue, orange, and red regions indicate invariant tori, ICCs,
periodic solution-generating regions, and chaos-generating
regions, respectively. Inside the region generating an in-
variant torus, regions generating ICCs extend like a web in
many direction as shown in Fig. 2, which can be called an
Arnol’d resonance web. At the intersection of thicker two
ICC-generating regions, a periodic solution generating re-
gion can be observed. Such regions are called Chenciner
bubbles [23]. The magnified view of Fig. 2 is shown
in Fig. 3. Complex bifurcation structure is observed in
Fig. 3. In the figure, a green curve and red curves denote a
Neimark-Sacker bifurcation line, and saddle-node bifurca-
tion lines, which are derived by a shooting algorithm pro-
posed in Ref. [28]. Note that the bifurcation boundaries
obtained by Lyapunov analysis and by the shooting algo-
rithm do not fit completely. Therefore, we present highly
magnified view of Fig. 4. From Figs. 4(a) and (b), in-
evitable hysteresis is observed. The coexisting attactors at
Q (B1 = 2.15745, B2 = 2.02165) in Fig. 4 are presented
in Fig. 5. We hypothesize that the bifurcation structure
is cause by a subcritical Neimark-Sacker bifurcation and
QSN bifurcation. The situation is illustrated in Fig. 6. In
the figure, a stable periodic point and a stable ICC are il-
lustrated by the solid lines, and unstable ones are illustrated
by the broken lines.

Next, we investigate the initial condition boundary,
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(a)

(b)

Figure 4: Highly magnified view of Fig. 3. (a) Bifurcation
parameter B2 is traced from top to bottom. (b) Bifurcation
parameter B2 is traced from bottom to top.

(a) (b)

Figure 5: Coexisting attractors at Q in Fig. 4. (a) Stable
two-dimensional torus. (b) Periodic solution.

Figure 6: Expected bifurcation structure.

Figure 7: Fractal basin boundary at Q in Fig. 4 (z0 = 0.8,
w0 = 0.8).

which is illustrated in Fig. 7. In the figure, blue, and or-
ange zones indicate regions where an ICC and a periodic
point are stable. In addition, yellow denotes the region that
results in the initial conditions representative of diverging
solutions. The fractal basin is observed.

3. Conclusion

This study analyzed quasi-periodic bifurcations ob-
served in a coupled delayed logistic map. Complex bifur-
cation such as Chenciner bubbles accompanied hysteresis,
and fractal basin boundaries were observed. Since the dy-
namics of the present study is a simple diffeomorphism, the
phenomena demonstrated in this study could be universal.
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