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Abstract—Hamiltonian neural networks are a type of
neural networks for learning equations of motion that de-
scribe physical phenomena from given observed data. Such
models should be used in physical simulations; however, it
is known that when general-purpose numerical integrators
are used for discretization, the energy conservation law and
other laws of physics are destroyed. Structure-preserving
numerical methods such as the variational integrator are ef-
fective to address this problem. We propose a variational
integrator for Hamiltonian neural networks in this paper.

1. Introduction

In recent years, neural network models that learn equa-
tions of motion that explain observed data of physical phe-
nomena have been attracting much attention. The Hamilto-
nian neural network proposed by Greydanus et al. in 2019
is an example of such a study [1]. In Hamiltonian neural
networks, given data is assumed to satisfy the Hamiltonian
equation:

d
dt

(
q
p

)
=

(
O I
−I O

)
∇H (1)

In this equation, q and p represent generalized coordinates
and generalized momenta, respectively. H is a function that
depends on q and p and represents the total energy of the
system. This function H is also called the Hamiltonian of
the system. By learning the Hamiltonian H in this equation
using a neural network, Hamiltonian neural networks learn
the equations of motion that the data obey. In this paper,
we refer to neural network models that learn equations of
motion as deep physical models.

In the last three years, research on deep physical models
has intensively performed, and numerous extensions have
been proposed, including the neural symplectic form [7],
Lagrangian neural networks[2] based on Lagrangian dy-
namics, DGNet[3] and VIN[4], as well as other models
discretized in the time direction.

Additionally, [5] also includes theoretical analyses such
as proofs of universal approximation properties and gener-
alization error analysis. A primal application of these mod-
els is physical simulations. Therefore, models discretized
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in the time direction are particularly useful, as such models
do not require a further discretization for simulations. On
the other hand, discrete-time models have a disadvantage
of being unable to be simulated with time steps other than
that used in the training process. As a result, developing a
way to discretize continuous-time deep physical models for
simulation is important. In addition, discretization meth-
ods of deep physical models are also useful for designing
discrete-time models.

We propose a variational integrator for Hamiltonian neu-
ral networks as such a method. The variational integrator is
a numerical method of the Euler–Lagrange equation, which
is the fundamental equations of Lagrangian mechanics [6].
By discretizing the variational principle, which is a funda-
mental principle of analytical mechanics, the variational in-
tegrator discretizes the equations without breaking various
conservation laws. The variational integrator network, one
of the discrete-time deep physics models, is based on this
approach. On the other hand, for Hamiltonian neural net-
works, however, such a discretization method has not been
established. In this paper, we propose a variational integra-
tor for Hamiltonian neural networks, and to this end, we
need to solve the following two questions.

• Is it possible to formulate a discrete variational prob-
lem similar to the variational problem for the Hamil-
ton equation using the energy function given by a neu-
ral network?

• Can the discrete Hamilton equation be derived from
the formulated discrete variational problem?

In particular, regarding the second question, because the
Hamiltonian is provided by a neural network, it is not pos-
sible to execute variational calculus manually. Therefore, it
is necessary to successfully apply automatic differentiation
to perform the discrete variational calculus.

The following is the outline of this paper. First, in Sec-
tion 2, the variational integrator for Lagrangian mechanics
is explained. Next, in Section 3, we explain the Hamilto-
nian equation and the variational principle that derives it.
Finally, in Section 4, we propose a variational integrator
for Hamiltonian neural networks.
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2. Outline of the varitaional integrator

The variational integrator was proposed as a method to
discretize the Euler–Lagrange equation, which is the fun-
damental equation of Lagrangian mechanics, by using the
variational principle. First, the variational principle and
the Euler–Lagrange equation are explained briefly. Let
q(t) : t ∈ R 7→ q(t) ∈ Rn denote a variable that represents
the state. Consider the case of a mass point in motion under
a force derived by a potential energy V(q). The Lagrangian
L(q, q̇), which depends on q and its time derivative q̇, is de-
fined as the difference between the kinetic and the potential
energy:

L(q, q̇) :=
m
2

q̇ · q̇ − V(q), (2)

where the mass is denoted by m. The Euler–Lagrange
equation, which is the equation of motion in Lagrangian
mechanics, is defined as follows:

∂L

∂q
−

d
dt
∂L

∂q̇
= 0. (3)

This equation is known to be equivalent to Newton’s equa-
tion of motion. The variational principle states that the
Euler–Lagrange equation is obtained by computing the sta-
tionary points of the action integral S , which is defined as

S :=
∫ T

0
L(q, q̇)dt.

The variational integrator uses this principle for dis-
cretization. More precisely, in general, numerical integra-
tors of differential equations are derived by discretizing a
given differential equation; however, to obtain the vari-
ational integrator, the variational principle is discretized,
that is, the action integral is discretized and stationary
points of the discretized action integral are computed. In
the following, the approximate value of q(n∆t) is denoted
by q(n), where ∆t is the time step size. Then, q̇ can be ap-
proximated, for example, as follows:

q̇ ≃
q(n+1) − q(n)

∆t
.

Suppose that the Lagrangian is given as (2). Then the La-
grangian can be approximated by

Ld(q(n), q(n+1)) :=
m
2

q(n+1) − q(n)

∆t
·

q(n+1) − q(n)

∆t
− V(q(n)).

Using this discretized Lagrangian, the action sum S d is de-
fined as follows:

S d =

N−1∑
n=0

Ld(q(n), q(n+1))∆t.

It is easy to confirm that this is an approximation of the ac-
tion integral S . In the variational integrator, as in ordinary

Lagrangian mechanics, the discrete equations of motion are
derived by computing the variation of the action sum. Let
δq(n) be a variation with q(n) with both ends fixed

δq(0) = δq(N) = 0

as is common in the original variational principle. Ignor-
ing higher-order terms, the computation of difference of S d
leads to

N−1∑
n=0

Ld(q(n)+δq(n), q(n+1)+δq(n+1))∆t−
N∑

n=1

Ld(q(n), q(n+1))∆t

=

N−1∑
n=0

(
D1Ld(q(n), q(n+1))δq(n) + D2Ld(q(n), q(n+1))δq(n+1)

)
∆t

=

N−1∑
n=0

(
D1Ld(q(n), q(n+1)) + D2Ld(q(n−1), q(n))

)
δq(n)∆t,

where D1 and D2 are derivatives with respect to the first and
second variables, respectively. Note that the final equality
uses δq(0) = δq(N) = 0. To be zero for any variation δq(n),
the following conditions must be satisfied

D1Ld(q(n), q(n+1)) + D2Ld(q(n−1), q(n)) = 0.

This is an approximation to the Euler–Lagrange equation
and is known as the discrete Euler–Lagrange equation.

3. Variational principle behind the Hamilton equation

Similar to the Euler–Lagrange equation, the Hamilton
equation is known to be derived by the variational princi-
ple. Instead of S , consider the following integral:∫ T

0
(p · q̇ − H(q, p)) dt (4)

By ignoring the higher-order terms and fixing both ends,
the variation of this integral becomes∫ T

0
((p + δp) · (q̇ + δq̇) − H(q + δq, p + δp)) dt

−

∫ T

0
(p · q̇ − H(q, p)) dt

=

∫ T

0
(p · δq̇ + δp · q̇ − D1Hδq − D2Hδp) dt

=

∫ T

0

(
−ṗ · δq + δp · q̇ −

∂H
∂q
· δq −

∂H
∂p
· δp

)
dt +

[
p · δq

]T
0

=

∫ T

0

(
(−ṗ −

∂H
∂q

) · δq + (q̇ −
∂H
∂p

) · δp
)

dt

For this variation to be zero for any δq and δp, the following
conditions must be hold:

−ṗ −
∂H
∂q
= 0, q̇ −

∂H
∂p
= 0.

This corresponds to the Hamilton equation (1).
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4. Proposed variational integrator for Hamiltonian
neural networks

In this section, we propose a variational integrator for
Hamiltonian neural networks. Suppose that a trained
Hamiltonian neural network is given, of which Hamilto-
nian is given by a neural network HNN. First, as in the
Lagrangian formalism, consider the following sum that ap-
proximates the integral (4)

N−1∑
n=0

(
p(n) ·

q(n+1) − q(n)

∆t
− HNN(q(n), p(n))

)
∆t

where q(n) and p(n) are approximations of q(n∆t) and
p(n∆t), respectively. Computing the variation of the above
sum with respect to the infinitesimal perturbations δq(n) and
δp(n) of q(n) and p(n) under the assumption that δq(0) =

δq(N) = 0, we obtain

N−1∑
n=0

(
(p(n) + δp(n)) ·

(q(n+1) − q(n)

∆t
+
δq(n+1) − δq(n)

∆t
)

− HNN(q(n) + δq(n), p(n) + δp(n))
)
∆t

−

N−1∑
n=0

(
p(n) ·

q(n+1) − q(n)

∆t
− HNN(q(n), p(n))

)
∆t

=

N−1∑
n=0

(
p(n) ·

δq(n+1) − δq(n)

∆t
+ δp(n) ·

q(n+1) − q(n)

∆t

− D1HNN(q(n), p(n)) · δq(n) − D2HNN(q(n), p(n)) · δp(n)
)
∆t.

For the first term, the following equality holds:

N−1∑
n=0

p(n) ·
δq(n+1) − δq(n)

∆t
∆t

=

N−1∑
n=0

p(n) · δq(n+1) −

N−1∑
n=0

p(n) · δq(n)

=

N∑
n=1

p(n−1) · δq(n) −

N−1∑
n=0

p(n) · δq(n)

=

N−1∑
n=0

p(n−1) · δq(n) −

N−1∑
n=0

p(n) · δq(n)

=

N−1∑
n=0

(
−

p(n) − p(n−1)

∆t
· δq(n)

)
∆t

where δq(0) = δq(N) = 0 is used. This is often referred to as
”summation by parts.” Using this, the above variation can

be rewritten as follows:
N−1∑
n=0

(
−

p(n) − p(n−1)

∆t
· δq(n) + δp(n) ·

q(n+1) − q(n)

∆t

− D1HNN(q(n), p(n))δq(n) − D2HNN(q(n), p(n))δp(n)
)
∆t

=

N−1∑
n=0

((
−

p(n) − p(n−1)

∆t
− D1HNN(q(n), p(n))

)
· δq(n)

+
(q(n+1) − q(n)

∆t
− D2HNN(q(n), p(n))

)
· δp(n)

)
∆t.

Hence for the vatiation to be zero the following equation
must hold:

−
p(n) − p(n−1)

∆t
− D1HNN(q(n), p(n)) = 0,

q(n+1) − q(n)

∆t
− D2HNN(q(n), p(n)) = 0.

These equations can be rearranged to
q(n+1) − q(n)

∆t
p(n) − p(n−1)

∆t

 =
(

O I
−I O

) (
D1HNN(q(n), p(n))
D2HNN(q(n), p(n))

)
. (5)

It turns out that this is certainly an approximation of the
Hamilton equation (1).

We now consider whether q(n+1) and p(n+1) can be com-
puted using this equation for a Hamiltonian HNN given by
a neural network. First, because each expression of (5) is
valid for any n, so (5) can be rewritten as

q(n+1) − q(n)

∆t
p(n+1) − p(n)

∆t

 =
(

O I
−I O

) (
D1HNN(q(n+1), p(n+1))

D2HNN(q(n), p(n))

)
. (6)

This defines the simultaneous equations for q(n+1), p(n+1),
when q(n), p(n) are given. This system of equations can
be solved numerically as explained below. The D1 and
D2 are the derivatives of the neural network from the first
and second variables, respectively. Therefore, if the values
of HNN(q(n), p(n)) and HNN(q(n+1), p(n+1)) can be calculated,
D1HNN and D2HNN can be obtained by using automatic dif-
ferentiation.

For simplicity, let us solve the above system of equa-
tions by using a simple fixed-point iteration method. Let
q(n+1)

(k) , p
(n+1)
(k) be the approximations of q(n+1), p(n+1) at the

kth iteration. The algorithm of the fixed-point iteration
method is as follows:

q(n+1)
(0) = q(n), p(n+1)

(0) = p(n),q(n+1)
(k+1)

p(n+1)
(k+1)

 = (
q(n)

p(n)

)
+ ∆t

(
O I
−I O

) (
D1HNN(q(n+1)

(k) , p
(n+1)
(k) )

D2HNN(q(n), p(n))

)
.

The right-hand side can be computed using automatic dif-
ferentiation. Thus, when the algorithm converges, the nu-
merical method (6) certainly determines q(n+1), p(n+1).
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Figure 1: Predicted solutions (q: blue, p: orange) by the
Euler method (top) and those by the variational integrator
(bottom).

5. Numerical Example

We trained Hamiltonian neural networks using a data set
of a simple harmonic oscillator:

q̇ = p, ṗ = −q.

We performed physical simulations by using the trained
model discretized by the explicit Euler method and the pro-
posed variational integrator. The time step size was set to
∆t = 0.01. The numerical solutions are computed from
t = 0 to t = 100. When the neural network was trained,
it was confirmed that the loss function was certainly small
enough. Fig. 1 shows the simulation results by the two
methods, while Fig. 2 shows the energy behaviors. When
the explicit Euler method was employed, the energy in-
creased and the numerical solution diverged. When the pro-
posed method was used, however, the energy was very well
conserved and the solution continued to oscillate within a
certain range.

6. Concluding Remarks

In this paper, we have proposed a variational integrator
for Hamiltonian neural networks. In Hamiltonian neural
networks, the variational calculus cannot be performed by
hand because the energy function is given by a neural net-
work. Therefore, it was necessary to confirm that this prin-
ciple can be certainly applied and the solutions of the de-
rived numerical method can be computed by using auto-
matic differentiation. In addition, the energy conservation
property of the proposed method was confirmed by the nu-
merical experiment.
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