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Abstract—In this paper, two particle swarm optimizer
networks are proposed. In the proposed algorithms, multi-
ple sub-swarm groups construct a global swarm with a net-
work structure. The first network has deterministic links to
each sub-swarm. The second network has temporal links to
each sub-swarm. The proposed methods are evaluated by
the computer simulations. The solving performances and
the number of communications in each method are investi-
gated.

1. Introduction

Recently, systems have been large scale and complicated
with the developments of technologies. So, it is difficult
to search the optimum statements of the systems that sat-
isfy the constrained conditions within realistic time. Vari-
ous optimization algorithms called meta-heuristics are de-
veloped to obtain high quality solutions speedily for these
optimization problems. However, as the optimization prob-
lems have been large scale, the evaluation costs for the ob-
jective functions have significantly increased. Therefore,
reducing the number of evaluations for the objective func-
tions has been a very important subject.

For such a subject, there are methods to parallelize the
calculations for the objective functions by using multiple
processors, and to reduce them in each processor. In this
approach, it is important to satisfy the following require-
ments: (1) the number of interprocess communications
which can be large overhead is reduced, and (2) the par-
allelized algorithms keep or improve the solving perfor-
mances as possible, compared with the non-parallelized al-
gorithms.

In this paper, Particle Swarm Optimizers (PSOs) with
group-of-group network topologies are proposed. PSO is
an optimization algorithm inspired by flocking behavior of
living beings [1]. In PSO, particles move to the directions
to desired solutions in the search space, by sharing the in-
formation of the best solutions in the search process. The
basic PSO has high parallelism, since the evaluations of
each particle is independent and only the information of
the best solutions is exchanged.

In the proposed algorithms, multiple sub-swarms con-
struct a global swarm with network topologies. The sub-
swarms exchange the local best solutions of them to each
other. Such a group-of-group network topology can pro-
vide the following advantages: (1) each sub-swarm group
searches solutions independently, and the diversity of the

solutions can be generated, (2) the evaluation values for the
objective functions are calculated in each sub-swarm group
independently, and the parallel-distributed computing with
high parallelism can be realized, and (3) only the informa-
tion of the best solutions is exchanged, and the overhead of
the interprocess communications can be reduced as possi-
ble.

The various PSO algorithms using multiple sub-swarms
have been proposed [2]-[5]. However, it has not been suffi-
ciently considered how the network topologies between the
sub-swarms affect the solving performances. On the other
hand, the various PSO algorithms with network topologies
have been proposed [6]-[11]. However, the network topolo-
gies are introduced to the couplings between each particle;
they are not multiple sub-swarm models but global swarm
models.

In this paper, the following two algorithms using group-
of-group network topologies are proposed. (1) PSO net-
works with Deterministic couplings (PSON-D). (2) PSO
networks with Temporal couplings (PSON-T). The pro-
posed methods are evaluated by the computer simulations.
Then, the solving performances and the number of commu-
nications in each method are investigated. It is shown that
the proposed algorithms can significantly improve the solv-
ing performances in various benchmark functions with very
small interprocess communications. Our algorithms are
suitable for implementation on parallel-distributed com-
puter systems.

2. PSO networks with deterministic couplings (PSON-
D)

In this section, the PSO Networks with Deterministic
couplings (PSON-D) are explained. Figure 1 shows the ex-
ample of PSON-D. In this figure, the swarm is divided into
multiple sub-swarm groups, and each group is connected to
the other neighbor groups. A particlei in a groupg(i) has
the personal best solutionpbesti , and the groupg(i) has the
local best solutionlbestg(i). Each group has the neighbor
groups characterized by a constant Degree Between each
Group (DBG) and each group has the group-local best solu-
tion (glbest) shared by their groups. The network topology
can be changed by adjustingDBG. When a particlei in a
groupg(i) updateslbestg(i), the groupg(i) transmits the in-
formation oflbestg(i) to the neighbor groups. The groupg(i)
and its neighbor groups updateglbestwhich each group in-
dependently has if the transmittedlbestg(i) is better than the
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Figure 1: An example of a PSO Network (PSON-D)

currentglbest. The ith particle updates the position vector
and velocity vector by the following equation.

vt+1
i = ωvt

i + c1r1(pbestti − xt
i )

+ c2r2(lbesttg(i) − xt
i ) (1)

+ c3r3(glbesttg(i) − xt
i )

xt+1
i = xt

i + vt+1
i (2)

wherext
i andxt+1

i denote the current and next position vec-
tors of theith particle,vt

i andvt+1
i denote the current and

next velocity vectors of theith particle, andt denotes the
search iteration.ω is an inertia coefficient,c1, c2 andc3 are
acceleration coefficients, andr1, r2 andr3 are uniform ran-
dom numbers from 0 to 1. In PSON-D, even if one group
traps into local minimum, the group can escape from the
local minimum by the effect ofglbestg(i). The algorithm of
PSON are described by the following procedures.

Step1: Let t = 0. For alli, the vectorsx0
i andv0

i are initial-
ized at random.

Step2: For all i, the particlei updatespbestti .

Step3: For all g(i), the groupg(i) updateslbesttg(i).

Step4: If a particle i in the g(i)th group updateslbesttg(i),
the groupg(i) communicates to the neighbor groups
and their groups update eachglbestt.

Step5: For all i, the vectorsxt+1
i andvt+1

i are updated by
Equations (1) and (2).

Step6: Let t = t+1. Step 2 to 5 are repeated untilt = tmax.

If the number of groups is 1 andglbest is not used,
PSON-D corresponds to the standard PSO. IfDBG de-
creases, the propagation ofglbestbecomes slower. While
DBG increases, the propagation ofglbestbecomes faster.

3. PSO networks with temporal couplings (PSON-T)

In this section, temporal couplings are introduced to our
PSO network. This algorithm is referred to as the PSO
Network with Temporal couplings (PSON-T).

In PSON-T, each particle does not have the group-local
best solution (glbest) in the neighbor groups but has the
global best solution (gbest) in all the groups. In addition,
each group temporally refers togbest. If a group does not
refer togbest, the group operates as same as the indepen-
dent PSO of the single swarm. PSON-T is described by the
following procedures.

Step1: Let t = 0. For alli, the vectorsx0
i andv0

i are initial-
ized at random.

Step2: For all i, the particlei updatespbestti .

Step3: For all g(i), the groupg(i) updateslbesttg(i).

Step4: For all g(i), the random numberrg(i) is obtained. If
rg(i) ≤ C, the groupg(i) can updategbestt. If rg(i) > C,
the groupg(i) does not updategbestt.

Step5: For all i, the vectorsxt+1
i andvt+1

i are updated as
follows.

vt+1
i =



ωvt
i +c1r1(pbestti − xt

i ) rg(i) ≤ C
+c2r2(lbesttg(i) − xt

i )
+c3r3(gbestt − xt

i )
ωvt

i +c1r1(pbestti − xt
i ) rg(i) > C

+c2r2(lbesttg(i) − xt
i )

(3)

xt+1
i = xt

i + vt+1
i (4)

whereC is the communication rate parameter.

Step6: Let t = t+1. Step 2 to 5 are repeated untilt = tmax.

If the parameterC is small, the number of communications
can be reduced. In addition, it is expected that the diversity
of the solutions can be generated; the search performances
can be improved.

4. Numerical experiments

In order to confirm the effectiveness of the proposed
PSON-D and PSON-T, the numerical experiments are per-
formed.

The four benchmark functions shown in Table 1 are used
in the experiments.F2 (Sphere function) andF3 (Rosen-
brock function) are unimodal functions.F1 (Rastrigin
function) andF4 (Griewank function) are multimodal func-
tions with numerous local minimum. The optimum solu-
tion of F3 is x = (1,1,1, · · · ,1), and the optimum solutions
of the others functions arex = (0,0,0, · · · ,0). The opti-
mum evaluation values of all the functions areF(x) = 0.

Each algorithm is applied to the above four functions
whose dimensions are 30. For all the experiments, the num-
ber of iterationstmaxis 30000 and the number of trials with
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Table 1: Benchmark Functions.
Function Range

F1(x) = 10D +
n∑

d=1

(
(xd)2 − 10 cos(2πxd)

)
xd ∈ [−5.12 : 5.12]

F2(x) =
n∑

d=1

x2
d xd ∈ [−5.12 : 5.12]

F3(x) =
n∑

d=1

(
100(xd+1 − x2

d)2 + (1− xd)2
)

xd ∈ [−2.048 : 2.048]

F4(x) = 1+
1

4000

n∑
d=1

x2
d −

n∏
d=1

cos

(
xd√

d

)
xd ∈ [−600 : 600]

Table 2: Parameters in PSO-D

PSON-D

No. of groups 8
No. of particles 20

DBG 2, 4, 7
ω 0.729
c1 1.4955
c2 1.4955
c3 0.1955
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Figure 2: Simulation results for PSON-D (Function:F1).

different random initial values is 32. For each algorithm,
30 experimental values are obtained by removing the the
best value and the worst value from 32 trials.

First, the number of groups is fixed to 8, andDBG is var-
ied to 2, 4, and 7.DBG = 2 andDBG = 7 correspond to
the ring topology and star topology, respectively. Then, the
solving performances of PSON-D are investigated, and the
number of communications is evaluated. Table 2 shows the
parameter in the experiments. Figure 2 and Table 3 show
the simulation results. In Figure 2, the horizontal axis is
the number of iterations, and the vertical axis is the aver-
age experimental values. In Table 3, ”Best” means the best
experimental value, ”Worst” means the worst experimen-
tal value, ”Ave.” means the average experimental value.
”Comm.” means the total number of communications.

Table 3: Simulation results for PSON-D.
DBG Best Worst Ave. Comm.

F1

2 1.39× 101 3.48× 101 2.41× 101 1.02× 104

4 1.19× 101 2.98× 101 2.11× 101 1.30× 104

7 1.19× 101 2.79× 101 2.12× 101 1.71× 104

F2

2 0 0 0 1.06× 105

4 0 0 0 1.94× 105

7 0 0 0 3.29× 105

F3

2 4.33× 10−17 1.20× 10−14 1.27× 10−15 3.71× 105

4 4.40× 10−18 3.72× 10−15 2.93× 10−16 1.94× 105

7 2.64× 10−19 4.05× 10−15 2.49× 10−16 1.46× 106

F4

2 0 1.11× 10−16 3.70× 10−18 6.72× 103

4 0 0 0 1.04× 104

7 0 0 0 1.65× 104

Table 4: Parameters in each algorithm

SPSO PSON-D PSON-D PSON-T

No. of groups 1 8 8 8
No. of particles 160 20 20 20

DBG − 2 7 −
ω 0.729
c1 1.4955
c2 1.4955
c3 − 0.1955 1.9955
C − 0.01

Table 5: Simulation results for each algorithm

Best Worst Ave. Comm.

F1

SPSO 4.88× 101 1.23× 102 8.69× 101 −
PSON-T 0 9.94× 10−1 3.30× 10−2 2.20× 103

F2

SPSO 0 0 0 −
PSON-T 0 1.98× 10−323 0 7.26× 103

F3

SPSO 7.13× 10−11 1.25× 102 1.68× 101 −
PSON-T 4.58× 10−14 5.55× 10−7 3.08× 10−8 7.13× 103

F4

SPSO 0 4.40× 10−2 9.85× 10−3 −
PSON-T 0 0 0 5.65× 102

As shown in these results, when the parameterDBG in-
creases, the number of communications increases. How-
ever, the search performances are improved a little. From
these results,DBG should be small value.

Next, PSON-T is compared with SPSO, PSON-D
(DBG = 2) and PSON-D (DBG = 7). Table 4 shows the
parameters in the experiments. Table 5 show the simula-
tion results for SPSO and PSON-T. The simulation results
for PSON-D can be found in Table 3. Figure 3 shows the
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Figure 3: Simulation results for each algorithm (Function:
F1. )

comparison results for the functionF1. As shown in these
results, PSON-T has better solving performances than the
other algorithms. In the FunctionF1, the solutions of SPSO
and PSON-D are trapped into the local minima. However,
PSON-T can escape from the local minima by temporally
referring togbest. In PSON-T, the communication rate pa-
rameterC is fixed 0.01. Then, each sub-swarm group inde-
pendently searches solutions in the most iterations. When
a sub-swarm group is trapped into the local minima, the
sub-swarm group can move from the local minima by tem-
porally referring togbest. Moreover, since each sub-swarm
group does not frequently communicate to each other, the
number of communications can be reduced. The above re-
sults show that PSON-T has the good solving performances
with reducing the overhead for interprocess communica-
tions.

5. Conclusions

This paper has proposed two PSO networks (PSON-D
and PSON-T). In order to confirm the effectiveness of our
new algorithm, the numerical experiments have been per-
formed. First, in PSON-D, the parameter ofDBG has been
varied. In this simulation, the smallerDBG leads to reduce
the number of communications. However, it is necessary
to investigate effects to solving performances by chang-
ing DBG, in more detail. Next, PSON-T has been com-
pared with a standard PSO, and PSON-D. In this simula-
tion, PSON-T shows better performances than the other
algorithms. Also, PSON-T can reduce the number of in-
terprocess communications. This algorithm can effectively
solve various optimization problems by using multiple pro-
cessor systems.

Future problems include the more improvements of solv-
ing performances, and the implementation on real multiple
processor systems.
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