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Abstract—This paper presents a simple switched dy-
namical systems based on boost converters for con-
stant/controlled input. The input is represented by a
current-controlled voltage source and is connected to the
output through an inductor and switches. The dynamics
is described by piecewise linear systems with nonlinear
switching rules and the analysis can be integrated into a one
dimensional return map. Using the return map, we have in-
vestigated interesting bifurcation phenomena between sta-
ble periodic behavior and chaos.

1. Introduction

Switched dynamical systems (SDS) are nonlinear sys-
tems consisting of sub-dynamics of continuous state vari-
ables and switching rules that define connection of the sub-
dynamics. The SDS relates to many important engineering
systems including switching power converters, analog-to-
digital converters and spiking neurons [1]-[3]. The switch-
ing can cause interesting bifurcation phenomena. Analysis
of such SDS can contribute to basic design of efficient en-
gineering systems and development of bifurcation theory.

This paper presents a simple SDS that can be re-
garded as a simplified model of boost converters with con-
stant/controlled input. The input is represented by a linear
current-controlled voltage source (CCVS) and is connected
to the output through an inductor and switches. As a param-
eter varies, the CCVS is changed from the constant source
to the controlled source and the SDS is changed from a
simplified model of dc-dc converters [9] to that of the pho-
tovoltaic systems [4, 5]. Effects of the parameter relate
to various problems, e. g., design of the maximum power
point tracker [5] - [8].

The circuit dynamics is described by piecewise linear
systems with nonlinear switching rules and the analysis can
be integrated into a one dimensional return map [9, 10].
Using the map, we have investigated bifurcation for the
CCVS parameter. Especially, we have found an interest-
ing bifurcation form a long periodic orbit to chaos that can
not be observed in the case of dc-dc converters. Basic bi-
furcation sets can be calculated precisely.

It should be noted that mainstream in analysis of pho-
tovoltaic systems are small signal steady state analysis.
Chaotic dynamics and global stability have not been ana-
lyzed sufficient so far. This results provides basic informa-
tion to realize stable operation of switching power convert-
ers and for detailed analysis of complex bifurcation phe-
nomena [9].

2. The Switched Dynamical System
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Figure 1: Switched Dynamical Systems
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Figure 2: Switching rule and definition of the phase map

Fig. 1 shows the SDS based on the boost converter. The
circuits includes the linear CCVS characterized by

F(i) = −Ri + V1 (1)

The case r = 0 and r > 0 correspond to the dc and con-
trolled inputs, respectively. The circuit can be either of the
following two states:

State 1: S conducting and D blocking
State 2: S blocking and D conducting

As shown in Fig. 2, the switch S and diodes D are con-
trolled by both inductor current i and periodic clock with
period T :

Rule:
State 1→ State 2: when i = i+
State 2→ State 1: when i = i− or t = nT
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where i+ and i− are the upper and lower thresholds of the
inductor current i, respectively. The circuit dynamics is
described the following equation and the switching rule.

L
di
dτ
=

{
F(i) for State 1
F(i) − Vo for State 2

(2)

Since (i+ − i−) > 0, the circuit can not be the discontin-
uous conduction mode where both S and D are blocking.
We have assumed that all the circuit elements are ideal and
the switchings are instantaneous as routine of circuit anal-
ysis [9]. The output voltage Vo corresponds to the RC load
of the converter in our simplification method [9]: the volt-
age regulation is assumed to be achieved in high frequency
modulation. If such simplification is not available, the cir-
cuit has two or more state variables and precise analysis is
very hard.

In order to extract essential parameters, we derive a di-
mensionless equation. We define the following dimension-
less variables and parameters:

τ =
t
T
, x =

i − I−
I+ − I−

, r =
RT
L

a =
1

I+ − I−
(
V1

r
), b =

1
I+ − I−

(
V1

r
− V0

r
)

Using these, Eq. (2) and the switching rule are trans-
formed into

dx
dτ
=

{ −rx + a for State1
−rx − b for State2

(3)

Rule:
State 1→ State 2: when x = 1
State 2→ State 1: when x = 0 or τ = n.

Fig. 3 shows typical waveforms calculated by exact
piecewise solution. As parameter varies, the SDS exhibits
various periodic and chaotic behavior. Especially, stable
periodic orbit (SPO) in Fig. 3 (c) is period 2 and is impos-
sible the SDS of dc-dc converters.

3. The return map and stability

In order to analyze bifurcation phenomena, we derive the
return map. As shown in Fig. 4, let τn denote n-th switch-
ing moment at which x reaches the upper threshold 1. At
time τn, State 1 is changed into State 2 and x decays for the
lower threshold 0. If x reaches 0 or the next clock pulse
with period 1 arrives, State 2 in changed into State 1 and x
reaches 1 again at time τn+1. Since the τn determines τn+1,
we can define 1-D return map τn+1 = F(τn) from positive
reals to itself. Performing elemental geometrical calcula-
tion of the PWL orbits, we can obtain explicit formulation
of the map:
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Figure 3: Typical waveforms for r = 0.7. (a) SPO for a =
1.9 and b = 1.5. (b) Chaos for a = 1.608 and b = 1.446.
(c) SPO for a = 1.206 and b = 0.828. (d) Chaos for a = 1
and b = 0.846.

τn+1 = F(τn)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τn − 1
r

(
ln(

b
r + b

) − ln(
a

a − r
)

)

for 0 < τn ≤ τD

1
r

ln

(
r

r − a
((1 +

b
r

)er(τn−1) − a + b
r

)

)
+ 1

for τD ≤ τn < 1

(4)
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Figure 4: Definition of return map

where τD = n+ 1
r ln b

r+b . For simplicity, we introduce phase
variable θn = τn mod 1. Using the phase, the return map
can be reduced into the phase map from I ≡ (0, 1) to itself:

θn+1 = f (θn) ≡ F(θn) mod 1 . (5)

Fig. 5 shows typical phase maps for r > 0. As param-
eters vary a fixed point p1 is born via tangent bifurcation
(see (a) to (c) ). The fixed point p1 corresponds to SPO
with period 1 in Fig. 3 (a). The fixed point loses its stabil-
ity and is changed into chaotic orbit via tangent bifurcation
as shown in (d). The second fixed point p2 is born as (e).
It corresponds to SPO with period 2 in Fig. 3 (c). The sec-
ond fixed point p2 is changed into chaotic orbit via tangent
bifurcation as shown in (f). Here we define several bifurca-
tion sets.

• B1 = {(a, b, r)|F(θD) = θD + 1}: the first tangent bifur-
cation set on which the break point θD is a fixed point
of the phase map f and corresponds to periodic orbit
with period 1.

• B2 = {(a, b, r)|F(θD) = θD + 2}: the second tangent
bifurcation set on which the break point θD is a fixed
point of the phase map f and corresponds to periodic
orbit with period 2.

• Bp1 = {(a, b, r)|D f (p1) = −1}: the first period dou-
bling bifurcation set on which the first fixed point p1

loses its stability. D f (p1) denotes the slope of f at p1.

• Bp2 = {(a, b, r)|D f (p2) = −1}: the second period dou-
bling bifurcation set on which the second fixed point
p2 loses its stability.

• BD = {(a, b, r)|θD = 0}: a parameter set on which the
break point θD disappears.

Using the exact piecewise solution, these parameter sets
can be calculated precisely. The results are illustrated in
Fig. 6.

In order to consider effects of the parameter r, we show
bifurcation diagram for r = 0 and typical phase maps in
Figs. 7 and 8. The case r = 0 corresponds to dc-dc con-
verters and their detailed analysis results can be found in
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Figure 5: Phase map for r = 0.7 (a) a = 2.9 and b =
1.5.(b)a = 2.35 and b = 1.65.(c)a = 1.9 and b = 1.5.(d)a =
1.608 and b = 1.446.(e)a = 1.206 and b = 0.828.(f)a =
1.00 and b = 0.846.

[10]. Note that the phase map is piecewise linear and the
second periodic doubling bifurcation set Bp2 does not ex-
ist. As shown in the figures, the first fixed point p1 is born
via tangent bifurcation and changed into chaotic orbit via
period doubling bifurcation. The second fixed point p2 can
be born but can not be stable because the map is piecewise
linear. That is, second or more period doubling is possible
only if r > 0. More detailed analysis is in progress.

4. Conclusions

We have analyzed basic dynamics of a simplified model
of boost converter whose input is represented by the CCVS.
As a parameter vary, the CCVS is changed from the dc
source to the controlled source and the SDS is changed
from a simplified model of the dc-dc converter to the
MPPT. Using the piecewise exact solution and the phase
map, basic bifurcation between periodic attractor and chaos
has been investigated.

Future problems are many, including detailed analysis
of bifurcation phenomena, measurement of conversion ef-
ficiency, and experimental confirmation of typical phenom-
ena.
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Figure 6: Bifurcation diagram for r = 0.7.

Figure 7: Bifurcation diagram for r = 0.
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