
Implementing the non-linear wave metric on the Q-Eye cellular array
processor chip

Dániel Bank†, Ákos Zarándy‡ and Dániel Hillier §

†Faculty of Information Technology, Péter Pázmány Catholic University, Budapest, Hungary
‡Analogic and Neural Computing Laboratory, Computer and Automation Research Institute of

the Hungarian Academy of Sciences, Budapest, Hungary
§Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland

Email: banda@digitus.itk.ppke.hu, zarandy@sztaki.hu, daniel.hillier@fmi.ch

Abstract—Algorithms designed for machine vision ap-
plications such as medical imaging, surveillance, etc., very
often require some kind of comparison between images.
The non-linear wave metric is a relatively novel approach
that can be used to measure both the shape and the area dif-
ference between two objects in one single operation. In this
paper we present the implementation of the wave metric on
the Q-Eye cellular visual microprocessor chip (AnaFocus
Ltd.) that combines the benefits of a highly selective met-
ric with high speed, efficient execution.

1. Introduction

Medical imaging, surveillance, etc. rely on image pro-
cessing algorithms that very often require some kind of
comparison between images. Examples include detecting
a pathology in a medical image, object search in image
databases, or real-time recognition of intruder-like shapes
in a surveillance scenario. A very straightforward solution
for comparing two images is to compute their pixel-wise
difference. On a traditional digital computer architecture
the pixel-wise difference operation requires at least twice
as much computational steps as the number of pixels in
the image. More complex image processing algorithms are
composed of many similar image processing steps, thus in
most cases the solution of a real-world problem can cost a
lot of computing power. Therefore, real-life problems can
hardly be solved on-line or real-time at a reasonable cost
using current PC architectures, impeding the application of
high speed machine vision algorithms in many fields.

In most cases, pixel-wise difference does not provide
enough information for meaningful object comparison thus
more complex measures are required. E.g. quantitation
of shape differences between objects is often used in im-
age processing and recognition algorithms. The non-linear
wave metric, introduced in [11], measures both the shape
and the area difference between two objects in one single
operation. The execution time of the non-linear wave met-
ric is extremely short when implemented on a multi-layer
cellular nonlinear network (CNN) architecture, e.g. on the
CACE1k chip [7], but the availability of such devices is
limited.

a e

b f

c g

d h

Figure 1: Snapshots showing the binary evolution of A∩ B
constrained by A ∪ B during the calculation of the wave
metric. As shown in (a), there are two objects to be com-
pared denoted by solid and dashed outlines respectively.
The propagation is initiated from A ∩ B and proceeds till it
fills A ∪ B shown in (d), (e)-(h) show the evolution of the
wave map dlHS storing the local Hausdorff distances.

In this paper, we present the implementation of the
grayscale version of wave metric on the Eye-RIS Vision
System v1.2 (AnaFocus Ltd., www.anafocus.com) that em-
beds a pixel-parallel topographic processor, the Q-Eye (the
successor of the ACE16k chip [10]).

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 108 -



This paper is organized as follows. First, the non-linear
wave metric is outlined. Next, the Eye-RIS implementa-
tion is described and then compared to implementations on
other architectures.

2. Object comparison

Object comparison requires a properly defined metric
and a reference. The choice of the metric is an intricate
task. The pixel-wise difference is a very obvious measure
of the degree of coincidence of point sets, also termed as
the area difference when binary images are compared. This
operator corresponds to the well-known Hamming distance
which is the result of a pixel-wise XOR operation on two
given finite binary point sets A and B:

dHm =
∑

(A ∪ B\A ∩ B) (1)

Another often-used distance is the Hausdorff distance. The
Hausdorff distance is defined as

dHs = max(h(A, B), h(B, A)) (2)

where h(A, B) = max
a∈A

min
b∈B
‖a − b‖ and ‖.‖ is some norm on

the points of A and B. The function h(A, B) identifies the
point a ∈ A that is farthest from any point of B and mea-
sures the distance from a to its nearest neighbor in B using
the given norm ‖.‖. Although the Hamming and Hausdorff
distances are commonly used in image processing applica-
tions for object comparison and classification, they have
several disadvantages. Hamming distance measures the
area difference, but does not reveal anything about shape
difference. Hausdorff metric measures shape difference but
cannot tell anything about shape properties, like average
distance between two objects, e.g. a one pixel sized noisy
spot can drastically modify the Hausdorff distance.

2.1. Non-linear wave metric

In [11] the non-linear wave metric was introduced that
measures both area and shape differences between two bi-
nary objects. Let a binary wave - very similar to the con-
strained wave operator used in [3,8] - be started from A∩B
and propagating till it matches the points of A∪B. The time
required for the wave to occupy A ∪ B measures the differ-
ence between the shapes A and B. During wave evolution
a grayscale image dlHS is created in which a pixel value
corresponds to the time required for the wave to reach that
pixel from A ∩ B. The sum of these local Hausdorff dis-
tances gives the wave-type metric dW =

∑
dlHS .

The process of calculating the wave metric can be seen in
Fig. 1. Object parts not connected to A∩B are not filled by
the wave thus the wave metric is robust to noise appearing
as small spots on the background. In addition to capture
both area and shape differences, this binary wave metric
has parallel implementation with about 10 µs running time
on [5] or [10].

2.2. Grayscale version

The binary version of the wave metric can be extended
to grayscale images. The grayscale version of the wave
metric is formulated in a PDE model where an image -
either binary or gray-scale - is defined as a real function
I(x, y) : [0,N]2 → [0, 1], zero values stand for background.
The two objects to be compared are two images Iin and Ire f

with identical dimensions to I. The dynamical equation
defining the grayscale wave metric comparing two images
is a nonlinear partial differentiation equation (PDE):

∂I1(x, y, z)
∂t

= D · ∆I1 + v · (Imax − I1)

∂I2(x, y, z)
∂t

= w · (Imax − I1) (3)

where Imax(x, y) = max(Iin(x, y, 0), Ire f (x, y, 0)) contains
the pixel-wise maximum of I1 and I2, Imin(x, y) =

min(Iin(x, y, 0), Ire f (x, y, 0)), I1(x, y, 0) = Imin, I2(x, y, 0) =

0, v > 0 and w > 0 are constants. ∆ is the Laplace operator.
The final wave map is the steady state solution of I2.The
interested reader can find more details on the grayscale ver-
sion of the metric in [13, 14].

3. Implementation on the Q-Eye chip

The Matlab code approximating Eq. (3) was used as a
standard to which the output of the hardware implementa-
tion could be compared. The pseudo code description of
the algorithm working on the Q-Eye chip is presented in
Algorithm 1.

First, images Imin and Imax are loaded into the on-chip
memory space (line 2,3). The wave metric is calculated
via discrete propagation steps (line 6). The result of each
propagation step is constrained by the union Imax of the two
objects to be compared (line 7). The difference between the
current state of the wave and the union is calculated in each
iteration (line 9,10). The propagation terminates once the
sum of this difference gets below a predefined value (line
16,20). The distance of the two input images is obtained in
a single value as the global sum of the generated wavemap
(line 12), or by summing the number of pixels changed in
current iteration (line 14).

co f f set is a predefined constant corresponding to the gray
level value of the hardware specific offset (which was mea-
sured), 4096 is a limit in the current Eye-Ris implementa-
tion on the number of countable pixels on a binary image.
∆ represents the result of horizontal and vertical propaga-
tion within one iteration.

Each processing cell in the Q-Eye chip contains a re-
sistive grid for implementing analog image filters. Hor-
izontal propagation was implemented using masked diffu-
sion. A binary mask was used to drive the diffusion (line 5).
Growth of image intensities (propagation onto the second
layer on the CACE1k chip [7]) can be easily implemented,
by adding intensity values (beside offset and noise) to the
object, using the dedicated circuitry in each cell.

- 109 -



Algorithm 1 Wave metric algorithm on the Q-Eye chip

1: function metric(Iinput, Ire f erence, nitermax, co f f set)
2: Imin = min(Iinput, Ire f erence)
3: Imax = max(Iinput, Ire f erence)
4: for i = 1 : nitermax do
5: Where Imin > 2 ∗ co f f set IOb jectMask = 1
6: Imin = ∆ · Imin

7: Imin = min(Imin, Imax)
8: Where Imin < co f f set Imin = 0
9: Where (Imax − Imin) > co f f set IActiveMask = 1

10: Where (Imax − Imin) > co f f set IWaveMap =

IWaveMap + 1
11: if s > 4096 then
12: s = sum(IWaveMap)
13: else
14: s = sum(IActiveMask)
15: end if
16: if s > 0 then
17: Where Imax > co f f set Imin = 0
18: Where Imax > co f f set IWaveMap = 0
19: else
20: break
21: end if
22: end for
23: return s
24: end function

In order to obtain the binary mask the grayscale object
has to be separated from the background noise and offset.
This was solved by setting an initial threshold value at two
times the measured offset, to define the object boundaries,
thus image intensities under this value do not participate in
metric calculation.

The tricky part of the analog implementation is to avoid
noise summation in a deeply recursive algorithm. Reusing
a picture in a LAM (Local Analog Memory) recursively,
the computational noise can be significant after many steps
in the background. This effect is compensated at each it-
eration, by setting the object background to zero intensity
level (line 8, 17, 18).

Final metric is calculated from the generated wavemap
by counting the number of changed pixels in each iteration.
The result is uploaded to the NIOS co-processor where it
is weighted and accumulated. To maximally exploit the
bit depth of the Q-Eye we generate a wavemap in the first
few iterations and sum it up, (line 11). Then in the next
iteration steps we count only the changed pixels (which is
faster, line 14), and add them to the previous value to get
proper wavemetric.

Snapshots from the evolution of the wave on the Q-Eye
chip are shown in Fig. 2.

The changed pixel values plotted at each iteration step of
the Matlab implementation, and the Eye-RIS implementa-
tion of Algorithm 1 can be compared in Fig. 3.

The code was developed in the Eye-RIS IDE and ex-

a b c d

Figure 2: Snapshots showing the evolution of Imin during
the calculation of the wave metric.

Figure 3: Global sum values s(i) plotted at each iteration
during wave evolution. The process stops when the en-
tire grayscale object is filled, when no pixel changes on
IActiveMask. We used the same accuracy in the Matlab im-
plementation (8 bit) to compare with the Q-Eye chip (8 bit
equivalent). As we can see the convergence is faster on
the Q-Eye chip, this is due to the effect of offset and signal
dependent noise of the analog processing elements. This
effect does not corrupt metric calculation, changes the ac-
cumulated value, but it remains still selective to measure
with it.

ecuted on the chip. Global summation was done by the
NIOS II 32 bit RISC processor embedded in the Eye-RIS
VS. The final and partial results were downloaded from the
chip.

One iteration of the wave evolution takes 93 µs at 144 ×
176 resolution on the Q-Eye, 52 µs at 128 × 128 resolution
on the SCAMP chip (simulation result) and 2.5 ms at 128×
128 resolution implemented in C language on a PC with
Pentium 4 2.8 GHz processor and 512 Mb RAM.

4. Discussion and conclusion

Low-level image processing operators like filtering, edge
detection, binary hole filling, feature extraction, etc. are
computationally intensive. These operations are inherently
pixel-parallel, i.e. identical, localized operations are per-
formed on every pixel. Efficient image processing sys-
tems can be designed by associating each image pixel with

- 110 -



an image processing circuitry and allowing local connec-
tions between neighboring processing cells. Each cell can
have local memories and can perform basic arithmetic and
logic operations on pixel values of their local neighbor-
hood. CNNs [1] represent a powerful framework for this
concept. In many CNN implementations, each individual
cell circuitry is a realisation of a nonlinear ordinary dif-
ferential equation, i.e. CNNs can be used to approximate
solutions of PDEs. A number of different CNN processor
implementations are available for parallel image process-
ing [15] on which various difficult image processing prob-
lems were solved at high speed [9].

Eq. (3) can be implemented in a single instruction on the
CACE1k chip [7], however concerns have been raised re-
lated to the accuracy and efficiency of the continuous-time
analogue CNN hardware implementations [2]. A straight-
forward method is available to compensate accuracy prob-
lems of continuous-time implementations via tuning CNN
templates to the chip instance used [4].

The availability of the Eye-RIS VS makes the wave met-
ric - already shown to be highly useful in solving very
hard image processing problems [12] - easily embeddable
in high speed image processing algorithms.

A next step will be to implement the wave metric on the
ASPA [6] architecture.

Acknowledgement

We wish to thank István Szatmári for sharing the result of his
work with us. Dániel Bank wishes to thank the support of Péter
Pázmány Catholic University for giving the oppurtunity to work
in the Jedlik Laboratory on the Eye-RIS Vision System. We wish
to thank to AnaFocus to make the Eye-RIS system available for
us, and gave technical support.

References

[1] L.O. Chua and T. Roska. Cellular neural networks and vi-
sual computing. Cambridge University Press New York,
NY, 2002.

[2] P. Dudek. Accuracy and Efficiency of Grey-level Image Fil-
tering on VLSI Cellular Processor Arrays. Proc. CNNA,
pages 123–128, 2004.

[3] D. Hillier, V. Binzberger, D. L. Vilarino, and Cs. Rekeczky.
Topographic cellular active contour techniques: Theory, im-
plementations and comparisons. International Journal of
Circuit Theory and Applications, 34(2):183–216, 2006.

[4] D. Hillier, S. Xavier-de Souza, J.A.K. Suykens, and J. Van-
dewalle. CNNOPT: Learning dynamics and CNN chip-
specific robustness. IEEE Int. Workshop on Cellular Neural
Networks and their Applications (CNNA), 2006.

[5] G. Linan, S. Espejo, R. Dominguez-Castro, and
A. Rodriguez-Vazquez. ACE 4 k: An analog I/O 64×
64 visual microprocessor chip with 7-bit analog accuracy.
International Journal of Circuit Theory and Applications,
30(2-3):89 – 116, 2002.

[6] A. Lopich and P. Dudek. Global operations in SIMD cel-
lular processor arrays employing functional asynchronism.
Computer Architecture for Machine Perception and Sens-
ing, 2006. CAMP 2006. International Workshop on, pages
18–23, 2006.

[7] I. Petrás, Cs. Rekeczky, T. Roska, R. Carmona, F. Jimenez-
Garrido, and A. Rodriguez-Vazquez. Exploration of spatial-
temporal dynamic phenomena in a 32× 32-cell stored pro-
gram two-layer CNN universal machine chip prototype.
Journal of Circuits, Systems, and Computers, 12(6):691–
710, 2003.

[8] Cs. Rekeczky and L. O. Chua. Computing with Front
Propagation: Active Contour And Skeleton Models In
Continuous-Time CNN. The Journal of VLSI Signal Pro-
cessing, 23(2):373 – 402, 1999.

[9] Cs. Rekeczky, I. Szatmari, D. Balya, G. Timar, and
A. Zarandy. Cellular multiadaptive analogic architecture:
a computational framework for UAV applications. Cir-
cuits and Systems I: Regular Papers, IEEE Transactions on,
51(5):864–884, 2004.

[10] A. Rodriguez-Vazquez, G. Linan-Cembrano, L. Carranza,
E. Roca-Moreno, R. Carmona-Galan, F. Jimenez-Garrido,
R. Dominguez-Castro, and S. E. Meana. ACE16k: the
third generation of mixed-signal SIMD-CNN ACE chips to-
ward VSoCs. Circuits and Systems I: Regular Papers, IEEE
Transactions on, 51(5):851 – 863, 2004.

[11] I. Szatmári, Cs. Rekeczky, and T. Roska. A Nonlinear Wave
Metric and its CNN Implementation for Object Classifica-
tion. The Journal of VLSI Signal Processing, 23(2):437 –
447, 1999.

[12] I. Szatmari, A. Schultz, Cs. Rekeczky, T. Kozek, T. Roska,
and L. O. Chua. Morphology and autowave metric on CNN
applied to bubble-debris classification. IEEE Trans. Neural.
Networks, 11(6):1385–1393, 2000.

[13] I. Szatmari. Object comparison using PDE-based wave met-
ric on cellular neural networks. Int. Journal of Circuit The-
ory and Applications, Vol. 34, pp. 359-382, 2006.

[14] I. Szatmari. Spatio-temporal Nonlinear Wave Metric for Bi-
nary and Gray-scale Object Comparison on Analogic Cellu-
lar Wave Computers, Int. Journal of Functional Differential
Equations, 2005.

[15] A. Zarandy, P. Foldesy, P. Szolgay, Sz. Tokes, Cs. Rekeczky,
and T. Roska. Various implementations of topographic, sen-
sory, cellular wave computers. IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages 5802–5805,
2005.

- 111 -


	Navigation page
	Session at a glance
	Technical program

