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Abstract—We review the Koopman Mode Analysis
(KMA) for nonlinear spatio-temporal dynamics and report
its application to power system analysis. KMA is a natu-
ral extension of the traditional linear mode analysis and is
based on spectral theory of dynamical systems. For a given
data on highly nonlinear dynamics, it gives a set of spatial
modes of oscillation with single frequency. KMA is used
for analysis of swing dynamics in a group of synchronous
machines that are of vital importance for planning and op-
eration of electric power systems.

1. Introduction

Mode analysis plays an important role in power system
analysis and control. Conventional methods are based on
linear system dynamics and have been traditionally applied
to power system studies. Due to nonlinear dynamics with
multi-scale and multi-physics in power systems, the lin-
ear mode analysis does not often give a clear solution for
power system analysis and control. A new approach to this
is strongly required, especially in future power grids with
emphasis on accurate monitoring, analysis, and control of
physical power systems.

In the farmer part of this paper, we review the Koopman
Mode Analysis (KMA) that is developed in [1]. KMA is
based on operator theory of dynamical systems and gives
a natural extension of the standard linear oscillatory mode
analysis. Koopman pioneered the use of linear operators on
Hilbert space to analyze nonlinear Hamiltonian systems by
introducing the so-called Koopman operator and studying
its spectrum [2]. This linear, infinite-dimensional operator
is defined for arbitrary nonlinear dynamical systems [3]. In
[1] the author showed via spectral analysis of the Koopman
operator that single-frequency modes can be embedded in
highly nonlinear, spatiotemporal dynamics. In Sec. 2 we
summarize the KMA with emphasis on numerical compu-
tation.

In the latter part of this paper (Sec. 3), we present an
application of the KMA to swing dynamics in a multi-
machine power system. Swing dynamics of synchronous
machines are of vital importance for power system stabil-
ity and control [4]. The so-called short-term swings are
associated with nonlinear electromechanical oscillations of
synchronous machines coupled via a transmission network.
Nonlinear phenomena are reported in this subject [5, 6, 7].
We apply the KMA to coupled swing dynamics in the New
England test system [8] and show that the KMA can extract
a set of spatial modes of oscillation with single frequency.
The contents are based on [9] and obtained with a slightly
different set of parameters.

2. Nonlinear Koopman Mode

We introduce the theory of Koopman operator and Koop-
man mode for nonlinear dynamical systems. The contents
here are based on [9]. Consider a discrete-time, nonlinear
dynamical system evolving on a smooth, finite-dimensional
manifold M, given by

xk+1 = F(xk), (1)

where x ∈ M is the state belonging to M, and F : M →
M is a nonlinear vector-valued mapping. The Koopman
operator is a linear operator U that acts on scalar-valued
functions defined on M in the following manner: for g :
M → R,

Ug(x) = g(F(x)). (2)

Although the dynamical system is nonlinear and evolves
on the finite-dimensional space, the Koopman operator U
is linear and infinite-dimensional. The eigenfunctions and
eigenvalues ofU are defined as follows: for functions ϕ j :
M → C and constants λ j ∈ C,

Uϕ j(x) = λ jϕ j(x), j = 1, 2, . . . (3)

In the following, we refer to ϕ j as Koopman eigenfunctions
of U and to λ j as the associated Koopman Eigenvalues
(KEs).

The idea in [1, 10] is to analyze nonlinear dynamics gov-
erned by (1), using the linear operator U and its eigen-
structure. To this end, consider a vector-valued observable
g : M → Rp. For example, if x ∈ M contains the full in-
formation about system dynamics at a particular time, g(x)
is a vector of any measured quantities of interest, such as
frequencies and voltages measured at various points in a
power system. In [1] the author shows that if the dynami-
cal system (1) possesses a smooth invariant measure, or the
initial condition x0 of (1) is on any attractor, then g(xk) is
exactly represented as

g(xk) =
∞∑
j=1

λk
jϕ j(x0)v j +



∫ 2π

0
eikθdE(θ)g1(x0)

...∫ 2π

0
eikθdE(θ)gp(x0)


, (4)

where gi(x) is the i-th element of g(x), and E(θ) is a con-
tinuous, complex spectral measure. The modulus of KEs
λi is identically one, because U is a unitary operator in

2011 International Symposium on Nonlinear Theory and its Applications
NOLTA2011, Kobe, Japan, September 4-7, 2011

- 124 -



the above situation [3]. In (4) we refer to the vectors v j as
Koopman Modes (KMs) of the system (1), corresponding
to g. On the right-hand side of (4), the first term repre-
sents the contribution of KEs (namely, point spectra ofU)
to the time evolution {g(xk)} and describes the average and
quasi-periodic parts of {g(xk)}. On the other hand, the last
term represents the contribution of continuous spectrum of
U and describes the aperiodic part of {g(xk)}. Hence, if
the dynamics observed in (1) have no continuous spectrum
in frequency domain (practical experience in power sys-
tem analysis suggests this situation), then the dynamics are
simply represented as

g(xk) =

∞∑
j=1

λk
jϕ j(x0)v j. (5)

In [1, 10], the authors show that the terms ϕ j(x0)v j are de-
fined and computed with a projection operation associated
withU applied to g(x). Define a family of linear operators
Pν: for g : M → R,

Pνg(x0) = lim
n→∞

1
n

n−1∑
k=0

e−i2πkνg(xk), (6)

where ν ∈ [−1/2, 1/2). When the initial condition x0 is on
an attractor of (1), a nonzeroPν is the orthogonal projection
operator onto the eigenspace of U associated with the KE
λ = ei2πν. The projections of the p components g1, . . . , gp
of g on the j-th eigenspace are obtained:

Pν j g1(x0)
...

Pν j gp(x0)

 = ϕ j(x0)v j, (7)

where ν j = Im[ln λ j]/2π. This formula (7) associates
ϕ j(x0)v j with the projection operation based on the opera-
tor Pν. The left-hand sides of (7) are just the Fourier trans-
forms of the observations {g(x0), g(x1), . . .}, and the terms
ϕ j(x0)v j can be computed.

Until now we assume that the dynamics of (1) are on an
attractor. Even if this is not the case, that is, we consider
dynamics off attractors or transient dynamics of (1), the
KM modes oscillate with a single frequency. If each of the
p components of g lies within the span of eigenfunctions
ϕ j, then, as in [11], we may expand the vector-valued g in
terms of these eigenfunctions as

g(x) =

∞∑
j=1

ϕ j(x)v j, (8)

where v j are regarded as the (vector) coefficients in the ex-
pansion. The time evolution {g(xk)} starting at g(x0) is
identically given by (5):

g(xk) =

∞∑
j=1

ϕ j(xk)v j =

∞∑
j=1

Ukϕ j(x0)v j

=

∞∑
j=1

λk
jϕ j(x0)v j. (9)

Thus we can refer to v j as the KM which oscillates with a
single frequency. If the dynamics observed here have only
a finite number of discrete spectra in frequency domain,
then we can expect that the expansion gives a good approx-
imation of the dynamics. In this way, the KE λ j charac-
terizes the temporal behavior of the corresponding KM v j:
the phase of λ j determines its frequency, and the magnitude
determines the growth or decay rate.

While the general Fourier analysis allows us to com-
pute KMs on an attractor, off attractors the KMs as well
as KEs can be computed using the Arnoldi algorithm [11].
Suppose that we have a sequence of N + 1 observations
{g(x0), . . . , g(xN)}. Let us define the empirical Ritz values
λ̃ j and empirical Ritz vectors ṽ j of this sequence by using
the following algorithm:

(i) Define constants c j such that for vector r satisfying
r⊥ span{g(x0), . . . , g(xN−1)},

r = g(xN) −
N−1∑
j=0

c j g(x j). (10)

(ii) Define the companion matrix C as

C =


0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 · · · 0 c2
...
...
. . .

...
...

0 0 · · · 1 cN−1

 . (11)

and find its N eigenvalues λ̃1, . . . , λ̃N .

(iii) Define the Vandermonde matrix T using λ̃ j as

T =


1 λ̃1 λ̃2

1 · · · λ̃N−1
1

1 λ̃2 λ̃2
2 · · · λ̃N−1

2
...
...

...
. . .

...
1 λ̃N λ̃2

N · · · λ̃N−1
N

 . (12)

(iv) Define ṽ j to be the columns of V = [g(x0) g(x1)
· · · g(xN−1)]T−1.

Then, we have the following equations that are originally
derived in [11]:

g(xk) =
N∑

j=1

λ̃k
j ṽ j, g(xN) =

N∑
j=1

λ̃N
j ṽ j + r, (13)

where k = 0 . . . ,N − 1. Comparing with (5), the empirical
Ritz values λ̃ j and vectors ṽ j behave precisely in the same
manner as the KEs λ j and the terms ϕ j(x0)v j of Koopman
eigenfunctions and KMs, but for the finite sum (13) instead
of the infinite sum (5).

3. Application to Power System Analysis

In this section, we apply the KMA to coupled swing dy-
namics in the New England (NE) 39-bus test system. The
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Figure 1: The New England 39-bus test system [8]
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Figure 2: Coupled swing dynamics of the 9 generators in
the New England 39-bus test system

NE system is shown in Fig. 1 and is a well-known bench-
mark system for power system studies [8]. The system con-
tains the 10 generation units (equivalent 10 synchronous
generators, circled numbers in the figure), the 39 buses, and
AC transmission lines. Most of the buses have constant ac-
tive and reactive power loads. Assume that bus 39 is the
infinite bus.

Figure 2 shows an example of coupled swing dynam-
ics of generators 2–10 in the NE system. The dynamics
are obtained with numerical integration of the nonlinear
swing equations [4] for the system (see [9]). All numerical
simulations discussed in this section were performed using
MATLAB. The parameters of the equations are basically
fixed using the nominal values in [8]. We suppose that the
magnitudes of the line reactances are 30 times larger than
in [8], that the mechanical input power to the generators
and constant power loads are 50% at their ratings, and the
damping coefficients of the generators are uniformly 0.005.
Under the settings, we investigate nonlinear swing dynam-
ics under a heavily lossy network, light loading conditions,
and small damping that may appear in a low-voltage dis-
tribution network. We use the following fault condition:
each generator operates at a steady condition at t = 0 s.
Then a three-phase fault happens at point F near bus 6 at
t = 1 s − 8/(60 Hz) ≈ 0.87 s, and line 6–11 trips at t = 1 s.
The fault duration is 8 cycles of a 60-Hz sinusoidal wave.
The fault is simulated by adding a small impedance (10−7i)
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Figure 3: Koopman
eigenvalues (empirical
Ritz values) λ̃ j obtained
with the Arnoldi-based
algorithm. The color
varies smoothly from
red to white, depending
on the norm of the
corresponding mode.

Table 1: Numerical results on the Koopman modes
Mode |λ̃ j| f̃ j/Hz ||ṽ j||

1 1.0002 1.2921 4.3358 × 10−1

2 9.9911 × 10−1 3.9045 × 10−1 6.2621 × 10−1

3 9.9813 × 10−1 9.8397 × 10−1 4.8215
4 9.9807 × 10−1 1.7139 2.1461 × 10−1

5 9.9760 × 10−1 1.5060 4.2192 × 10−1

6 9.9659 × 10−1 7.1001 × 10−1 2.2057
7 9.9653 × 10−1 7.9905 × 10−1 6.3235

between bus 6 and the ground. In the figure, ωi denotes
the deviation of rotor speed in generator i relative to the
system angular frequency (2π × 60 Hz). After clearing the
fault at t = 1 s, complicated swings happen in the 9 genera-
tors. They contain more than one frequency, that is, behave
in a multiple-periodic manner during the duration. Genera-
tors 2 and 3 have large swings because they are electrically
close to the location of the local fault. This figure shows
that all of the 9 machines respond to the local fault in an
oscillatory manner.

Now we compute the KEs and KMs (the empirical Ritz
values λ̃ j and associated vectors ṽ j) using the Arnoldi-
based algorithm. As a sequence of sampled observations
{g(xk)}Nk=0, we use the simulation output shown in Fig. 2
that extracts the vector of rotor speed deviations {ω(kT +
1 s)}Nk=0, where the uniform sampling period T = 1/(50 Hz)
and the number of samples N + 1 = 501. Here we use
ω = (ω10, ω2, . . . , ω9)T, where T indicates transpose in vec-
tors. The choice of the observations has a clear physical
meaning in power systems: one measures rotor speeds or
frequencies for every generation plant that are directly re-
lated to kinetic energy stored in the generators. For com-
putation, the implementation of Step (i) in the computation
algorithm is described in [9].

Figure 3 shows the KEs (empirical Ritz values) λ̃ j. The
norm of r in Step (i) is of order 10−13. Many KMs are ob-
tained and are close to the unit circle |λ̃ j| = 1. Now let
us focus on KMs that have both large growth rates |λ̃ j| and
large norms of ṽ j. Such modes represent sustained swing
components for the time duration and have dominant mag-
nitudes in the outputs. Tab. 1 shows numerical results on
KEs and KMs, which we call Mode 1 to Mode 7. The norm
for Mode j is defined as ||ṽ j|| =

√
ṽT

j ṽ j. The order of KMs

in Tab. 1 is based on the magnitudes of growth rates, |λ̃ j|.
Now we pick up Mode 2, Mode 3 and Mode 7 that have
large norms in the table. Mode 6 has a large norm, too. But
its frequency is close to Mode 7, and hence we do not con-
sider the mode. Fig. 4 shows the vectors of the three KMs
ṽ j ( j = 2, 3, 7). For the KMs, the associated amplitude
coefficients A ji := |ṽ ji| and initial phases α ji := Arg(ṽ ji)
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Figure 4: Koopman modes ṽ j ( j = 2, 3, 7) in Table 1

(i = 2, . . . , 10) are also shown (ṽ ji denotes the i-the en-
try of ṽ j).1 Mode 2 implies a coherent swing with a low
frequency in generators 4–9. On the other hand, Mode 3
has a high peak of amplitudes at generator 3. Mode 7 have
high peaks of amplitudes at generators 2 and 3. These
modes contribute localized swings at these generators that
are electrically close to the location of the local fault. Fig. 5
shows the modal dynamics for Mode j, denoted by g j(xk):

g j(xk) = λ̃k
j ṽ j + (λ̃c

j)
kṽc

j, (14)

where λ̃c
j (or ṽc

j) denotes the complex-conjugate of λ̃ j (or
ṽ j). Here we implicitly assume that Mode j has none-zero
imaginary part in the KE. Each KM contains single fre-
quency by construction. The swing of Mode 2, namely the
coherent swing of generators 4–9, is not dominant ener-
getically. However, it is reported in [12] that such a co-
herent mode governs a phenomenon of global swing insta-
bilities in the NE system. The dynamically relevant but
small-energy mode can be detected with the KMA. Also,
the KMA decouples frequency information more clearly
than proper orthogonal decomposition (see [9, 11]). In this
way, the coupled swing dynamics in the NE system are de-
composed into a set of KMs, namely, spatial modes of os-
cillation with single frequency.
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1In the previous paper [9] we use another definition of the initial phase
α ji := tan−1(Im[ṽ ji]/Re[ṽ ji]). In case that the range of tan−1 is assumed
to be [−π/2, π/2], the previous definition may not give Arg(ṽ ji) ∈ [−π, π),
that is, precise phase information. The current definition is better in this
case.
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Figure 5: Modal dynamics (14) of the Koopman modes ṽ j
( j = 2, 3, 7)
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[9] Y. Susuki and I. Mezić, IEEE T. Power Syst. (2011; pub-
lished online. doi:10.1109/TPWRS.2010.2103369); Proc.
IEEE PES General Meeting, Minneapolis, United States,
July (2010).
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