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Abstract– Chaotic dynamics in a single-mode 

semiconductor laser subject to optical feedback from fiber 

Bragg gratings (FBGs) is investigated. Obtained from the 

inverse Fourier transform on the magnitude of the optical 

spectra, the coherence function evaluates the suppression 

of the time-delay information. The intensity 

autocorrelation function time-delay signature (ACF-TDS) 

and coherence function time-delay signature (CF-TDS) are 

found to be sensitive to the FBG bandwidth. The FBG 

feedback with proper bandwidth and positive detuning 

frequency can achieve both ACF-TDS concealment and 

CF-TDS minimization in chaotic oscillation. Moreover, 

the TDS-optimized chaos can be generally obtained over a 

range of feedback delay times. Besides, comparing to 

conventional mirror feedback, the FBG feedback 

suppresses the ACF-TDS by more than an order of 

magnitude in the experiments. 

1. Introduction 

Nonlinear dynamics of semiconductor lasers have 

received attentions in recent applications [1-5, 18]. 

Chaotic dynamics is widely investigated because it is 

noise-like, broadband, and synchronizable. It has been 

utilized in novel applications such as chaos-based secure 

communication [3], high-speed random bit generation [2, 

18], and chaotic ranging [5]. Generally, inducing optical 

feedback into a semiconductor laser is the simplest way to 

obtain chaotic dynamics as only one laser is involved [6]. 

However, the feedback time-delay information can be 

extracted through the chaotic output analysis. 

Identification of the time-delay signature (TDS) in the 

autocorrelation of chaotic intensity time series is the most 

popular method for the delay time detection [7-12, 15, 

16]. The TDS threatens the security in secure 

communication, limits the sampling rate in random bit 

generation, and introduces ambiguity in target detection. 

Various approaches have been reported to solve this 

undesirable TDS problem. Rontani et al. has numerically 

demonstrated a pioneering work on TDS suppression in a 

single-mirror feedback scheme through optimizing the 

feedback strength at a relatively short feedback delay 

time, which is comparable to the period of the relaxation 

oscillation [7]. Other approaches that have been proposed 

include dual-path mirror feedback [8], polarization-

preserved or polarization-rotated feedback [9, 15], and 

mutually coupled feedback using two lasers [10, 16]. 

These approaches perform TDS suppression, while 

compromise the hardware complexity by adopting 

multiple reflectors or multiple lasers. Recently, fiber 

Bragg gratings (FBGs) have been used in chaos 

generation as a simple method of TDS suppression [11, 

12, 19]. Instead of a single mirror, an FBG is employed as 

a distributed reflector, which obscures the round-trip 

feedback delay times, hence leads to the TDS suppression. 

Comparing to the other approaches, the use of FBG 

feedback conceals TDS with relatively simple hardwares 

as it only involves coupling light into an FBG. 

 In this paper, a chaotic semiconductor laser subject to 

optical feedback from an FBG is investigated. In the 

simulation, besides the conventional intensity 

autocorrelation function (ACF), the so-called coherence 

function (CF), which equals to the inverse Fourier 

transform of the magnitude of the optical spectrum, is 

used for the TDS analysis as well. The evolution of the 

CF-TDS reveals the influences of the FBG bandwidth and 

detuning frequency from the laser on the identification of 

time-delay information. Feedback from the FBG with 

proper bandwidth and positive detuning frequency can 

achieve both ACF-TDS concealment and CF-TDS 

minimization in chaotic oscillation. Moreover, the TDS-

optimized chaos can be generally obtained over a range of 

feedback delay times. In the experiment, chaos with ACF-

TDS concealment has been obtained by using FBG 

feedback with a fixed delay time. Comparing to 

conventional mirror feedback, the FBG feedback 

suppresses the ACF-TDS by more than an order of 

magnitude.  

2. Model 

 
Fig. 1. (a) The schematic of a semiconductor laser subject to feedback 

from an FBG and (b) magnitude of the FBG impulse response |𝑟(𝑡)|, 
where (b-i), (b-ii), and (b-iii) correspond to 𝑓BW = 29 GHz, 7 GHz, and 

80 GHz, respectively, with 𝑓𝑙 = 5 GHz. 
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 Figure 1(a) shows the schematic of a single-mode 

semiconductor laser subject to distributed feedback from 

an FBG. The linearly polarized laser emission is directly 

coupled into a single-mode fiber appended with the  FBG. 

It then experiences a distributed reflection and injects 

back into the laser. The FBG is uniform and has no 

birefringence. The central frequency of its reflection 

spectrum, namely the Bragg frequency, is detuned by Δ𝑓 

from the free-running frequency of the laser. The optical 

path length from the laser to the front-end of the FBG is 

denoted by 𝑙0 . The corresponding feedback round-trip 

delay time is 𝜏RT = 2𝑙0/𝑐 with c being the speed of light 

in vacuum. This system can be described by the following 

rate equations [12]: 

 
𝑑𝑎

𝑑𝑡
 =  

1 − i𝑏

2
[
𝛾c𝛾n

𝛾s𝐽
𝑛̃ − 𝛾p(|𝑎|

2 − 1)] 𝑎  

             +𝛾c𝜉f𝑒
i𝜃[𝑟(𝑡)𝑒−i𝑡] ∗ 𝑎(𝑡 − 𝜏RT) (1) 

 
𝑑𝑛̃

𝑑𝑡
 =  −(𝛾s + 𝛾n|𝑎|

2)𝑛̃ 
 

 

              −𝛾s𝐽 (1 −
𝛾p

𝛾c
|𝑎|2) (|𝑎|2 − 1) (2) 

where the cavity decay rate 𝛾c = 5.36 × 10
11 s−1 , the 

spontaneous carrier relaxation rate 𝛾s = 5.96 × 10
9 s−1 , 

the differential carrier relaxation rate 𝛾n = 7.53 ×
109 s−1, the nonlinear carrier relaxation rate 𝛾p = 1.91 ×

1010 s−1 , the normalized bias current above threshold  

𝐽 = 1.222, the linewidth enhancement factor 𝑏 = 3.2, the 

feedback phase 𝜃 = 0 , and the normalized feedback 

strength 𝜉f  is proportional to the coupling efficiency 

between the laser. The laser parameters correspond to a 

relaxation resonance frequency of 𝑓r = 10.25 GHz. They 

were extracted from a commercial communication laser 

[17]. The FBG feedback term, which is proportional to the 

delayed optical field amplitude 𝑎(𝑡 − 𝜏RT)  convoluted 

with 𝑟(𝑡)𝑒−𝑖ΔΩ𝑡 , is the last term in Eq. (1), where 

ΔΩ = 2πΔ𝑓  is the angular frequency detuning of the 

Bragg frequency of the FBG away from the free-running 

frequency of the laser and  𝑟(𝑡) is the impulse response of 

the FBG at the rotating frame of the Bragg resonance 

frequency. Thus, 𝑟(𝑡)  equals to the inverse Fourier 

transform of the reflection frequency response [13, 14]:  

𝑟(Ω)  =  ΩBW ×  

  

(

 2Ω +  i√ΩBW
2 − 4Ω2coth

𝜋√ΩBW
2 − 4Ω2

2Ω𝑙
)

 

−1

 (3) 

with FBG parameters ΩBW = 2𝜋𝑓BW  and Ω𝑙 = 2𝜋𝑓𝑙 . 

From 𝑟(Ω)  in Eq. (3), the full width at half-maximum 

(FWHM) reflection bandwidth of the main lobe is 

approximately 𝑓BW for a highly reflective FBG, whereas 

the reciprocal of the round-trip propagation time inside the 

FBG is 𝑓𝑙  = 5.2 GHz, which is chosen throughout the 

simulation because it corresponds to a practical grating 

length of l = 20 mm with a refractive index of 1.444. The 

peak reflectivity of  tanh2(𝜋ΩBW/2Ω𝑙) is attained at the 

Bragg frequency at Ω = 0 . Numerical simulations are 

conducted based on second-order Runge-Kutta integration 

of Eqs. (1)-(3) with time step 2.38 ps over a time span of 

1.25 μs. The grating is chosen with θ = 0. The feedback 

strength is 𝜉f = 0.078 throughout the simulation. 

3. Numerical Results 

Figures 1(b-i)-(b-iii) show the magnitude of the FBG 

impulse response |𝑟(𝑡)| with 𝑓BW = 29 GHz, 7 GHz, and 

80 GHz, respectively. In Fig. 1(b-i), the FBG impulse 

response is confirmed as causal. It consists of two distinct 

components: a main reflection peak at time zero and a 

small peak at 𝑓𝑙
−1

. As a result, the FBG can provide a 

distributed reflection. The peaks are separated by 𝑓𝑙
−1

 = 

0.19 ns, which is the round-trip propagation time inside 

the FBG [14]. Besides, comparing Figs. 1(b-i)-(b-iii), the 

width of the main reflection peak is inversely proportional 

to the FBG bandwidth 𝑓BW. Roughly  δ-function response 

can be achieved when the FBG is sufficiently broadband, 

as Fig. 1 (b-iii) shows.  

 
Fig. 2. Numerically calculated (i) optical spectrum and (ii) magnitude of 
CF. The frequency axis is offset to the free-running frequency of the 

laser. The chaotic optical spectra are shown in black. For reference, the 

optical reflectivity spectra of the FBG are shown in red, whereas the 

corresponding group delays are shown in blue. The FBG bandwidth 𝑓BW 
= (a) 80 GHz, (b) 29 GHz, and (c) 13 GHz, respectively. The detuning 

frequency Δ𝑓 = 16  GHz. The feedback round-trip delay time 𝜏RT =
0.47 ns. 

Numerically calculated optical spectra of chaotic 

emissions are shown in black in Fig. 2(i), where the 

frequency axis is offset to the free-running frequency of 

the laser. For reference, the optical reflectivity spectra of 

the FBG are shown in red, while the corresponding group 

delays are shown in blue. The magnitude of the CF is 

shown in Fig. 2(ii). The FBG bandwidth 𝑓BW = 80 GHz, 

29 GHz, and 13 GHz in Figs. 2(a)-(c), respectively. The 

detuning frequency is Δ𝑓 = 16 GHz. The feedback round-

trip delay time is 𝜏RT = 0.47 ns.  

In Fig. 2(a) with FBG bandwidth 𝑓BW = 80 GHz, the 

bandwidth of the FBG is relatively broad comparing with 

the laser relaxation resonance frequency 𝑓r. The main lobe  
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Fig. 3. Numerically calculated (i) intensity time series and (ii) the 

corresponding ACF. The FBG bandwidth 𝑓BW = (a) 80 GHz, (b) 29 GHz, 

and (c) 13 GHz. The detuning frequency Δ𝑓 = 16 GHz and the feedback 

round-trip delay time 𝜏RT = 0.47 ns. 

of the FBG covers most of the chaotic optical spectrum 

and does not induce much dispersion of the group delay, 

as shown in Fig. 2(a-i). Due to the antiguidance effect, a 

significantly red-shifted optical spectrum that spans a 

frequency range of over 10 GHz is observed. The 

enhanced peaks are at negative offset frequencies. 

However, in the spectrum, there are periodic peaks 

separated by about 2 GHz, which roughly corresponds to 

𝜏RT
−1. These peaks can be regarded as the external cavity 

mode structures. Such spectral features result in peaks at 

around 𝜏RT  and its integer in the CF, which reveal the 

time-delay information in Fig. 2(a-ii). A clear CF-TDS 

unveils the delay time 𝜏RT as marked by the dashed line. 

In Fig. 2(b), the FBG bandwidth 𝑓BW = 29 GHz. The 

strongest emission peaks are now mainly found in the low 

frequency side lobes, as shown in Fig. 2(b-i). The 

frequency-dependent group delay experienced varies 

significantly, leading to an increase of chromatic 

dispersion. As a result, the FBG feedback obscures the 

information on the round-trip time delay. The periodicity, 

of the external cavity mode structures in Fig. 2(b-i) is less 

recognizable comparing with those in Fig. 2(a-i). This is 

further confirmed in Fig. 2(b-ii) that the CF-TDS is 

broadened and suppressed. Moreover, additional 

coherence peaks appear at different lag times, which 

induce uncertainty in the identification of CF-TDS.  

In Fig. 2(c), with 𝑓BW = 13 GHz, the strongest emission 

peaks move further away into the low frequency side 

lobes with the periodicity of the external cavity mode 

structures being even less recognizable in Fig. 2(c-i). The 

CF-TDS remains irregular as shown in Fig. 2(c-ii).

 Figures 3(a)-(c) show the numerically calculated 

intensity time series and the ACFs which correspond to 

the optical spectra in Figs. 2(a)-(c). Column (i) of Fig. 3 

shows the intensity time series 𝐼(𝑡) = |𝑎(𝑡)|2 , while 

column (ii) shows the autocorrelation of 𝐼(𝑡) as a function 

of the lag time. In Fig. 3(a-i), the intensity time series is  

 
Fig. 4. ACF-TDS and CF-TDS as functions of the normalized grating 

bandwidth 𝑓BW/𝑓r  in closed and open symbols, respectively. The 

detuning frequency Δ𝑓 = 16  GHz and the feedback round-trip delay 

time 𝜏RT = 0.47 ns. 

 
Fig. 5. ACF-TDS and CF-TDS as functions of the normalized feedback 

delay time 𝜏RT𝑓r  in closed and open symbols, respectively. The FBG 

bandwidth 𝑓BW = 29 GHz and the detuning frequency Δ𝑓 = 16 GHz. 

noise-like. It is hard to identify the time-delay information. 

However, when transformed into the ACF in Fig. 3(a-ii), 

the delay time 𝜏RT  can be easily observed through the 

location of the ACF-TDS as marked by dashed line. In Fig. 

3(b), the FBG bandwidth is 𝑓BW = 29 GHz. the intensity 

time series is also noise-like as shown in Fig. 3(b-i). The 

ACF-TDS is significantly suppressed in Fig. 3(b-ii). 

Further reduces 𝑓BW to 13 GHz, in Fig. 3(c-ii), the ACF-

TDS becomes pronounced again, but the ACF-TDS peaks 

deviates away from 𝜏RT, which means a reduced accuracy 

in time-delay information detection. 

 Detailed investigation of ACF-TDS and CF-TDS as 

functions of the normalized grating bandwidth 𝑓BW/𝑓r are 

shown in Fig. 4, where only chaotic oscillations are taken 

into account. The detuning frequency is kept at Δ𝑓 = 16 

GHz. The feedback round-trip delay time is kept at 

𝜏RT = 0.47 ns. Closed and open symbols correspond to 

ACF-TDS and CF-TDS, respectively. When the 

normalized grating bandwidth is relatively large, both the 

ACF-TDS and CF-TDS are nearly independent of 𝑓BW/𝑓r. 
Because the FBG bandwidth 𝑓BW  is sufficiently broad, 

further increasing it will not change neither the reflection 

power nor the group delay in the optical frequency range 

of chaos. When 𝑓BW/𝑓r is around 2.8, both ACF-TDS and 

CF-TDS are nearly minimized. Figure 4 shows that it is 

feasible to choose an FBG with proper 𝑓BW so that both 

ACF-TDS and CF-TDS can get effective suppression at 

the same time under a positive detuning frequency. 

Figure 5 shows the TDS as a function of the normalized 

feedback delay time 𝜏RT𝑓r, where only chaotic oscillations 

are taken into account. The FBG bandwidth 𝑓BW  = 29 

GHz and the detuning frequency Δ𝑓 = 16 GHz are kept 
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constant. Closed and open symbols correspond to ACF-

TDS and CF-TDS, respectively. In the normalized 

feedback delay time ranging from 4 to 8, both ACF-TDS 

and CF-TDS nearly remain unchanged. It is worth to 

mention that the TDS-optimized chaotic dynamics can be 

generally obtained over a range of feedback delay times. 

This significantly simplifies the operation in experiment.  

Furthermore, experimental verifications are conducted 

to confirm TDS suppression using FBG feedback. 

Compared to using a conventional mirror, the FBG 

feedback suppresses ACF-TDS, by over 10 times, to less 

than 0.04 according to experimental measurements. 

4. Conclusion 
 In summary, a single-mode semiconductor laser subject 

to optical feedback from an FBG is investigated. The 

ACF-TDS and CF-TDS are found to be sensitive to the 

FBG bandwidth. The FBG feedback with proper 

bandwidth and positive detuning frequency can suppress 

ACF-TDS and minimize CF-TDS in chaotic oscillations. 

Furthermore, the TDS-optimized chaos can be generally 

obtained over a range of feedback delay times. In the 

experiment, the FBG feedback suppresses the ACF-TDS 

to less than 0.04, which is about 10 times lower than that 

in conventional mirror feedback.    
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