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Abstract— Our previous papers prove that the automatic
design of programs for the Cellular Neural Network - Universal
Machine not only is feasible, but also is convenient in many
situations. Now, we discuss on the changes that should be made
to such a system in order to apply it to a generic cellular
wave computer, without any constraint on the kind of data and
instructions.

I. INTRODUCTION

The introduction of the cellular wave computer architec-
ture [1] is a breakthrough in the field of computation, since
it is the paradigm that may be most extensively applied in
the future. In fact, the last generation of processing devices
already contains several processors - sometimes fairly simple
- working on a unique complex task, and the resultant synergy
allows to go beyond the limits of the traditional digital
computers.

This paradigm requires also a new approach to design al-
gorithms and programs, since some of the characteristics of
computation on traditional digital computers have become
obsolete. For example, the solution of a nonlinear partial
differential equations is one of the most complex tasks to
perform on a digital microprocessor, but it is the elementary
instruction of a cellular wave computer: This change represents
a Copernican revolution.

It is possible to prove that cellular wave computers are
universal; in other words, there exists a program for a cellular
wave computer to perform any possible task. Therefore, one
of the main challenges for the future is designing efficiently
new programs for this kind of machine.

In [2] a particular cellular wave computer is considered, for
which input and output are images (and not image flows)
and instructions are binary masks (and not spatial-temporal
waves). In this case, it is possible to prove that all the programs
have to fit into a fixed structure, and they can be found find
automatically by using a a machine learning technique called
Genetic Programming (GP) [3], [4]. In this paper we recall
these results, defined for a Cellular Neural Network - Universal
Machine (CNN-UM), and we extend them to the most general
kind of cellular wave computer, describing the steps that
should be taken in order to make this system feasible.

The paper is structured as follows: firstly, we give a proof of
the universality of the CNN-UM and analyze its consequences;

then, we quickly describe GP and show its application to the
design of CNN-UM programs; finally, we discuss on how these
results can be extended to a general cellular wave computer
and delineate future work.

II. ON THE TURING COMPLETENESS OF THE CNN-UM

Proofs of universality are in general complicated and some-

times tedious due to the theoretical nature of Turing machines;
for this reason, in most cases people resort to analogies with
well-known universal machines, like Game of Life [5]. This
kind of proof was also used for the Cellular Neural Network -
Universal Machine; however, despite its enormous theoretical
importance, it does not give any hint about the structure of
the CNN-UM programs. This last aspect is generally left to
the expertise of the designer, except for specific cases, like the
design of Boolean functions [6].
An alternative proof of the universality of the CNN-UM was
presented in [2]. Such result, found by drawing an analogy
between the CNN-UM and another paradigm equivalent to an
arbitrary Turing machine [7], implies that any program for the
CNN-UM can be represented as follows

Repeat

Evaluate < CNN-UM function >

Until

< Some specific state of the memory >

in which the difference between a CNN-UM program and a
CNN-UM function is that the former can contain iterative and
recursive processes, the latter cannot. Therefore, thanks to this
alternative proof, we know that every algorithm for the CNN-
UM can be represented as a single repeat-until loop inside
which there are only a combination of CNN templates and
nested if-then-else.

The intrinsic nature of the proof suggests that the search space
constituted by all the possible CNN-UM programs with such
structure can be efficiently explored through a technique called
Genetic Programming, which converges to a solution faster
than random search, and has been already successfully applied
to CNNs (see [2] [8]).
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III. EXPLORING THE SEARCH SPACE THROUGH GP
A. Generalities on Genetic Programming

Genetic Programming repeatedly selects and evolves in-
stances from a population of computer programs, eventually
achieving a solution for a given computational task. We
consider here that the population is represented by means
of binary trees, as we did in our previous works; note that
other choices are also possible. The GP working principles
can be summarized as follows: firstly, a population of initial
programs is created; secondly, a fitness value is assigned to
each; thirdly, programs are combined through the so-called GP
operators to create a population of offspring; fourthly, the new
individuals replace the current population; finally, the whole
set of operations — called a generation — is repeated until
a stop condition is met, and the result is retrieved from the
last generation according to a certain criterion. If the various
GP parameters — number of generations, population size, etc.
— are set correctly, the fitness of the population improves
generation by generation, and its superiority to random search
is documented in the literature.

In GP it is not infrequent for a large percentage of the pop-
ulation to converge to a suboptimal result, and the subsequent
lack of diversity makes practically impossible the creation of
new individuals. In general, the species that dominates a given
niche depends on the initial conditions and the subsequent
history of probabilistic events. Therefore, the negative effect
of the premature convergence can be minimized by perform-
ing multiple independent runs starting from entirely separate
populations; the best-of-run individual is then designated as
the result of the group of runs.

B. Fitness function and genetic operators

In a GP system the fitness function indicates how good an
individual is. For instance, in a supervised image processing
problem the fitness of the actual result may be quantified
by measuring its resemblance with the desired output image.
Other parameters can also be taken into considerations, like
the number of levels and nodes of a tree: the simpler the tree,
the better its fitness. These different kinds of fitness can be
either combined into a single value through a weighted sum,
or used to in some form of Pareto-based selection. Usually,
the choice of the most appropriate fitness function strongly
depends on the problem of interest.

As for the operators, in our experiments we employ only
the three most important ones: reproduction, crossover, and
mutation. Each one is applied with a certain probability that
can either be fixed a priori or changed during the execution of
the GP algorithm. The reproduction is the simplest operator, as
it just copies an individual from the current generation to the
following one; its main function is assuring a sort of continuity
between generations. The crossover operator is applied to pairs
of individuals probabilistically extracted from the population
according to their fitness: a random node is selected within
each tree and then the subtrees rooted at such positions are
swapped, generating two new individuals that become part

of the next generation. Finally, mutation provides diversity to
the population, avoiding local minima. Its mechanism will be
explained in more detail in Sec. III-C.

C. A GP system to evolve CNN-UM programs

The population of our GP system consists of CNN-UM
programs, which evolve to find the best solution for the given
problem. The templates that can belong to such programs are
selected within a set chosen by the designer. Thanks to this
feature, any a priori knowledge about the problem is used
profitably and the search space can be significantly reduced.

The mutation operator is applied to a single randomly
selected individual, and it can act according to three different
mechanisms: choosing randomly a cloning template of the
algorithm and substituting it for another one; changing the
value of the variable of a parametric template; or it can
selecting randomly a point of the tree representing the CNN-
UM program, and then replace the whole branch from this
point upwards - that is, to the input level - with a new subtree
not related with the previous one.

The initial population of CNN-UM programs is set ran-
domly using a Ramped Half-and-Half method [3], which
assures a very diverse population composed by trees of several
different depths. The designer has the possibility to fix the
minimum and maximum size - i.e. maximum and minimum
number of levels and nodes - of the individuals, which con-
straint is enforced also during the evolution. Although other
methods can be employed, we found that this one gives the
best performances in terms of average number of generations
to converge to the solution.

In general, in GP the operation set must satisfy the re-
quirements of closure and sufficiency [4]; for our system, this
property is proved in [2].

IV. APPLYING THE GENETIC APPROACH TO FIND
PROGRAMS OF CELLULAR WAVE COMPUTERS

In the previous sections we summarized the main results
proved in [2] about a Cellular Neural Network - Universal
Machine: universality, general structure for the programs, and
validity of GP as a searching method in the solution space.
However, the model we have considered so far differs from
a generic cellular wave computer in several aspects: Firstly,
the input (and the output) is a single image, and not an
image flow; secondly, instructions are masks, and not spatial-
temporal waves; finally, in [2] was not analyzed any example
including branches or global conditions. In order to extend
our approach to a generic cellular wave computer, we need to
analyze how to include these features into the existing system.
As for the first point, the fitness measure can be easily general-
ized to an image flow. There exist several methods in literature,
however the simplest one is just sampling the input and the
output in a finite number of points, and then performing the
current fitness measure on each pair input/output belonging to
this set of images. If the sampling is well-performed — i.e. the
sample frequency is large enough — the information retrieved
using a finite number of images will be sufficient to evaluate
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the whole flow.

The second point, regarding the kind of instruction, can be
included easily in the our system, since a partial differential
equation can be expressed through a standard CNN tem-
plate [9]. This is not a limit to the application of a genetic
approach, though it is important to adjust the mutation operator
to avoid undesired combinations of numbers in the feedback
matrix A.

Finally, it is true that in [2] no practical examples showing
the application of branches and flow control structures were
shown, but only because the experiments considered were not
complex enough to require such features. We are currently
working on new examples in which it is necessary to take
them into account.

V. DISCUSSION

In this paper we have summarized the results that made
possible the automatic design of programs for the CNN-UM,
and we have also showed that they can be extended, with min-
imal variations, to a generic cellular wave machine, including
more complex features. In the near future we plan to carry out
experiments to confirm, or amend, our expectations, showing
that a genetic approach is valid tool to design programs for
the cellular wave machine.
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