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Abstract—We have presented a novel approach for re-
constructing tomographic images based on the idea of con-
tinuous dynamical methods. The method consists of a
continuous-time image reconstruction (CIR) system de-
scribed by differential equations for solving ill-posed in-
verse problems. We see that a switched system with a
piecewise smooth vector field, which describes a block
CIR system, can reconstruct better images than the smooth
CIR system. For investigating an essential property of the
switched system, we considered a small system and gave its
analytic solution as well as sufficient conditions for its sta-
bility via multiple Lyapunov functions approach. However,
some results seem to be incorrect. In this paper, we reprove
stability, but via the common Lyapunov function approach
which requires the existence of a single Lyapunov function
whose derivative along solutions of all subsystems satisfies
suitable inequalities.

1. Introduction

Tomography is imaging by sections or sectioning, and
computed tomography(CT) [1, 2, 3, 4] is a medical imag-
ing method employing tomography created by computer
processing. In general, a problem of reconstructed images
from a projection operator and a projection data set be-
come ill-posed. Many different reconstruction algorithms
are used in medical practice to solve the inverse problem
of image reconstruction and most algorithms fall into one
of two categories, filtered back projection (FBP) which is
a transform method and iterative methods using difference
equations that we call them discrete-time image reconstrac-
tion(DIR); FBP demands fewer computational resources,
while DIR generally produces fewer artifacts at a higher
computing cost; moreover, there are continuous dynami-
cal methods that can regularize such ill-posed inverse prob-
lems.

We have presented a novel approach [5] for reconstruct-
ing tomographic images based on the idea of continuous
dynamical methods [6, 7, 8, 9, 10]. The method con-
sists of a continuous-time image reconstruction (CIR) sys-
tem [5, 11] described by differential equations for solv-
ing ill-posed [12, 13, 14] inverse problems. We see that
a switched system with a piecewise smooth vector field,
which describes a block CIR system, can reconstruct better

images than the smooth CIR system [15]. For investigating
an essential property of the switched system, we consid-
ered a small system and gave the analytic solution of it,
which is positive when we start with a positive initial value
coinciding with what we already have proved in the gen-
eral case [15], as well as sufficient conditions for its stabil-
ity via multiple Lyapunov functions approach [16]. How-
ever, proving stability by using multiple Lyapunove func-
tions approach [16] is incorrect. In this paper, in the light of
the standard Lyapunov theory for smooth systems [17, 18],
we reprove stability, but via the common Lyapunov func-
tion approach [19] which requires the existence of a single
Lyapunove function whose derivative along solutions of all
subsystems satisfies suitable inequalities; to do that, we in-
vestigate an expression for the candidate function and its
derivatives with respect to all subsystems and then go back
to choose the parameters of that function so as to make the
candidate function positive definite and its derivatives neg-
ative definite for all subsystems.

2. Block CIR System [5, 11, 15]

The basic problem of computed tomography (CT) is to
calculate the pixel values x ∈ RJ

+, with R+ denoting the set
of non-negative real numbers, satisfying

y = Ax, (1)

where y ∈ RI
+\{0} is the projection value, and A ∈ RI×J

+ \{0}
is a normalized projection operator. For inconsistent pro-
jection data, Eq. (1) is an ill-posed problem, which means
that its solution is not unique or does not exist.

In our previous papers, to find a solution x, we formu-
lated an optimization problem described as:

min
x(t)∈RJ

+

V(x(t)), t ∈ R,

V(x) :=
1
2
∥y − Ax∥22. (2)

and to obtain a local minimum of the objective function,
we proposed a continuous dynamical method as an initial
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value problem in the following form:

dx
dt
= −X

∂V(x)
∂x

⊤

= X A⊤ (y − Ax) , (3)
t ∈ R+, x(0) = x0,

where X indicates the diagonal matrix of order J × J in
which the corresponding diagonal elements are elements
of x. The nonlinear system (3) has the property that V(x),
which can be a Lyapunov function on the state space RJ

++,
decreases along the solution φ(t, x0) in time through the
initial state x0 ∈ RJ

++, with R++ representing the set of pos-
itive real numbers.

We also proposed a block CIR system by introducing
subsets of projections as in block-iterative DIR methods.
Let Bm ∈ RIm×J

+ and zm ∈ RIm
+ be, respectively, a submatrix

consisting of Im partial rows of A and a subvector of y with
the same corresponding rows of Bm, for m = 1, 2, . . . ,M,
such that there exists an elementary matrix Q satisfying:

Q


B1
B2
...

BM

 = A and Q


z1
z2
...

zM

 = y. (4)

The block CIR system was defined by

dx
dt
= XBm

⊤ (zm − Bmx) , (5)

t − kτ ∈ [tm−1, tm), t ∈ R+,
x(0) = x0 ∈ RJ

++,

for a series of times 0 = t0 < t1 < t2 < . . . < tM = τ and a
non-negative integer k. This is a periodic non-autonomous
system when M ≥ 2 and is an autonomous system de-
scribed by Eq. (3) when M = 1. The subsystem of Eq. (5)
with M ≥ 2 defined in the time interval t − kτ ∈ [tm−1, tm)
for any m and k is described by:

dx
dt
= −X

∂Vm(x)
∂x

⊤
, (6)

where,

Vm(x) =
1
2
∥zm − Bmx∥22. (7)

Each subsystem of Eq. (5) has the property that Vm(x),
which can be a Lyapunov function, decreases in time along
the solution starting from x(kτ + tm−1) ∈ RJ

++.
We theoretically, numerically demonstrated that our

CIR, Eq. (3), and block CIR, Eq. (5), systems does not pro-
duce unphysically negative pixel values for positive initial
values; and also, by using examples, we indicated that the
quality of the reconstracted images by our systems was bet-
ter than that from other methods.

3. Switched Systems [19, 20]

Suppose that we are given a family fp, p ∈ P of functions
from Rn to Rn, where P is some index set. This gives rise
to a family of systems:

dx
dt
= fp(x), p ∈ P (8)

evolving on Rn. The functions fp are assumed to be suf-
ficiently regular. The easiest case to think about is when
all these systems are linear and the index set P is fi-
nite: P = {1, 2, . . . ,m}. The switched system with time-
dependent switching, generated by the above family, can
be described by the equation:

dx
dt
= fσ(x), (9)

where the switching signal σ : [0,∞) → P is a piecewise
constant function which has a finite number of discontinu-
ities, which we call the switching times, on every bounded
time interval and takes a constant value on every interval
between two cosecutive switching times. The role of σ is
to specify, at each time instant t, the index σ(t) ∈ P of the
active subsystem, i.e., the system from the family (8) that
is currently being follwed.

It is well known that a necessary condition for asymp-
totic stability under arbitrary switching is that all of the in-
dividual subsystems are asymptotically stable. In fact, this
condition is not sufficient for asymptotic stability under ar-
bitrary switching. The following theorem gives additional
requirements, on the systems from the family (8), that guar-
antee asymptotic stability of the switched system (9) for
arbitrary switching signals.

Definition 1. Consider a function V : Rn → R. It is called
positive definite if V(0) = 0 and V(x) > 0 for all x , 0. If
V(x)→ ∞ as |x| → ∞, V is said to be radially unbounded.

Definition 2. Given a positive definite continuously differ-
entiable function V : Rn → R, we will say that it is a com-
mon Lyapunov function for the family of systems (8) if there
exists a positive definite continuous function W : Rn → R
such that we have

L fp V(x) =
∂V
∂x

fp(x) ≤ −W(x) ∀x, ∀p ∈ P. (10)

Theorem 1. If all systems in the family (8) share a radially
unbounded common Lyapunov function, then the switched
system (9) is globally uniformly asymptotically stable.

The terminology uniform is employed here to indicate
the uniformity with respect to the switching signals, while
the term global refers to the fact that it holds for all initial
states.
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4. Main Result

We studied a block CIR system (5) with I = J = M = 2,
which is defined for t ∈

[
kτ, (k + 1

2 )τ
)

by

dx1

dt
= x1(y1 − x1), (11)

dx2

dt
= 0, (12)

and for t ∈
[
(k + 1

2 )τ, (k + 1)τ
)

by

dx1

dt
= x1 (y2 − (x1 + x2)) , (13)

dx2

dt
= x2 (y2 − (x1 + x2)) , (14)

where k is a non-negative integer, and got its analytic solu-
tion which is positive when we start with a positive initial
state [16].

Now, we can apply Theorem 1 by looking for a common
Lyapunov function V(x) that would have satisfy Eq. (10).
The two subsystems have the point (y1, y2 − y1) as a com-
mon equilibrium point which is stable for each of the two
subsystems by virtue of existing two Lyapunov functions
given by Eq. (7). Consider the following quadratic form:

V(x) =
1
2

(
y1 − x1

y2 − x1 − x2

)⊤ (
p11 p12
p12 p22

) (
y1 − x1

y2 − x1 − x2

)
=

1
2

p11(y1 − x1)2 + p12(y1 − x1)(y2 − x1 − x2)

+
1
2

p22(y2 − x1 − x2)2, (15)

for some positive definite matrix

P =
(

p11 p12
p12 p22

)
whose elements are functions of x1 and x2. For the
quadratic form to be positive definite, the elements of the
matrix P must satisfy

p11 > 0, p11 p22 − p2
12 > 0. (16)

The derivative V̇(x) is given by

V̇(x) = p12
[−(y1 − x1)(ẋ1 + ẋ2) − (y2 − x1 − x2)ẋ1

]
−p11(y1 − x1)ẋ1 − p22(y2 − x1 − x2)(ẋ1 + ẋ2)
+ṗ12(y1 − x1)(y2 − x1 − x2)

+
1
2

ṗ11(y1 − x1)2 +
1
2

ṗ22(y2 − x1 − x2)2. (17)

Substituting from Eq. (11) and Eq. (12) into Eq. (17), we
get

L f1 V(x) = −x1(p11 + p12)(y1 − x1)2

−x1(p12 + p22)(y1 − x1)(y2 − x1 − x2)

+
1
2

ṗ11(y1 − x1)2 + ṗ12(y1 − x1)(y2 − x1 − x2)

+
1
2

ṗ22(y2 − x1 − x2)2. (18)

Substituting from Eq. (13) and Eq. (14) into Eq. (17), we
get

L f2 V(x) = − [
(x1 + x2)p22 + x1 p12

]
(y2 − x1 − x2)2

−(x1 p11 + x1 p12 + x2 p12)(y1 − x1)(y2 − x1 − x2)

+
1
2

ṗ11(y1 − x1)2 + ṗ12(y1 − x1)(y2 − x1 − x2)

+
1
2

ṗ22(y2 − x1 − x2)2. (19)

Now we want to choose p11, p12, and p22 such that L f1 V(x)
and L f2 V(x) are negative definite. Since the cross product
(y1 − x1)(y2 − x1 − x2) is sign indefinite, we will cancel it
by taking

p22 = −p12, p11 = −
(

x1 + x2

x1

)
p12. (20)

With these choices, p12 must be negative for V(x) to be
positive definite via the satisfaction of Eq. (16). To simplify
our choices, let us take p12 as a constant and so, by using
Eq. (20), we get

ṗ22 = ṗ12 = 0, ṗ11 = −
 x1 ẋ2 − x2 ẋ1

x2
1

 p12, (21)

which implies that

ṗ11 =
x2

x1
(y1 − x1)p12, ṗ11 = 0, (22)

for the first and second subsystems, respectively. Using the
above discussion to get L f1 V(x) and L f2 V(x) as

L f1 V(x) =
1
2

x2

(
1 +

y1

x1

)
(y1 − x1)2 p12, p12 < 0, (23)

and

L f2 V(x) = x2(y2 − x1 − x2)2 p12, p12 < 0. (24)

Hence, the common Lyapunov function takes the form

V(x) = −1
2

(
x1 + x2

x1

)
(y1 − x1)2 p12 −

1
2

(y2 − x1 − x2)2 p12

+(y1 − x1)(y2 − x1 − x2)p12 p12 < 0. (25)

If we take p12 = −1, for example, we will get the common
Lyapunov function

V(x) =
1
2

(
x1 + x2

x1

)
(y1 − x1)2 +

1
2

(y2 − x1 − x2)2

−(y1 − x1)(y2 − x1 − x2). (26)

Now we introduce two figures, the first one, Figure 1,
shows the value of the common Lyapunov function given
by Eq. (26), while the second one, Figure 2, shows a trajec-
tory approaches the common equilibrium point (y1, y2−y1).
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Figure 1: Common Lyapunov Function
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Figure 2: Trajectory of Switched System

5. Conclusion

In this study, for investigating an essential property of
our new approach, Block CIR system, for reconstructing
tomographic images, we considered a small switched sys-
tem and discussed its stability via the common Lyapunov
function approach which shows stability for any switching
signal.
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