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Abstract—Reservoir Computing is a novel method in

the field of neural networks and machine learning, which

combines the computational power of a nonlinear dynamic

system with the ease of training of a linear classifier. The

basic setup is as follows: a sufficiently complex network of

nonlinear nodes (called the reservoir) is excited by an input

signal, and the instantaneous dynamic response of the sys-

tem is then used to train a simple linear readout function.

In this contribution, we present a proof-of-concept sys-

tem that demonstrates the possibility of using the nonlinear

spatiotemporal dynamics of a Cellular Neural/Nonlinear

Network (CNN) to play the role of a reservoir. We discuss

the advantages and limitations of this approach and illus-

trate the idea by using the system to solve both a simple

academic task and a real world speech recognition prob-

lem. We use a global optimization method called Coupled

Simulated Annealing (CSA) to optimize CNN templates

that give suitable reservoir properties to the CNN. Finally,

we validate the simulation results using an ACE16k CNN

chip.

1. Introduction

In the field of machine learning, a large class of inter-

esting real-world problems shares the same two character-

istics: a strong nonlinear input-output mapping, and the

fact that a large amount of the information is contained

in the temporal sequence of the input data. Examples are,

amongst others, problems from systems control, robotics,

timeseries forecasting, language processing, etc. In this

field, recurrent neural networks are often seen as a method

with a large potential for capturing the nonlinear and dy-

namic properties of the problem, but are also notoriously

difficult to train.

A possible solution to this training problem for RNNs

has been proposed under the name Echo State Networks

[2], but has since been extended to a broader class of learn-

ing systems under the name Reservoir Computing (RC)[4].

Reservoir Computing uses a recurrently connected net-

work of discrete nonlinear nodes (originally sigmoid neu-

rons) - the reservoir - which is constructed randomly at the

beginning of the experiment (i.e. the weights are drawn

from a random distribution), globally scaled for stability

and left untrained afterwards. The input timeseries of the

training set are used to excite the reservoir and the dynamic

response of the reservoir is then used to train a linear output

layer based on the desired output vectors at every timestep.

Because the only layer that is actually trained is linear, this

can be done using any of the available methods for estimat-

ing linear models, e.g. linear least-squares techniques.

Cellular Neural/Nonlinear Networks (CNNs) [1] are

a well-established computational paradigm with a sound

mathematical foundation and a whole range of applica-

tions, mainly in image and video processing. The be-

haviour of these CNNs is governed by the weight tem-

plates, which are either trained using a learning rule but are

also often tuned manually. In this paper, we present a novel

use of the CNN model that does not require hand-tuning of

the template and which broadens the area of application for

CNNs substantially.

This paper is constructed as follows: in section 2 we

formalize the experimental setting. In section 3 we will

present the results of the experiments and discuss some of

the implications. In section 4 finally, we draw conclusions

from our work and suggest some possibilities for future

work.

2. Experimental setup

We use the following notations: k is a discrete index in-

dicating the timestep, u[k] is the input vector at time k to

the system, x[k] is a vector of internal states of the reser-

voir, y[k] and ŷ[k] are vectors representing the desired and

estimated output respectively, and WA
B

is a weight matrix

containing the connections from A to B. The reservoir is a

recurrently connected, discrete time neural network, and is

governed by the following state equation:

x[k + 1] = f (Wres
resx[k] +Win

resu[k]) (1)

with f (·) a nonlinear function - usually a tanh(). In this

paper, however, we use a piecewise linear function as sat-

uration characteristic to approximate the CNN model more

accurately.

The output of the system is then computed as follows:

ŷ[k + 1] =Wres
outx[k + 1] +Win

outu[k] (2)

As mentioned before, in traditional RC systems the Win
res

and Wres
res matrices are constructed randomly at the begin-
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ning of any experiment and left untrained. The Win
out and

Wres
out matrices are trained by minimizing the mean square

error between the desired and estimated outputs, with an

additional constraint on the norm of the weight vector to

perform regularization:

Wout = arg min
W

(

‖ŷ−y‖2 + λ ‖W‖2
)

(3)

where ŷ =Wx and y are concatenated across all timesteps,

and λ is a regularization parameter that controls the amount

in which large weights are penalized to avoid overfitting.

Determining the optimal weights for the readout layer is a

well known problem and can be solved using ridge regres-

sion, also known as Tikhonov regularization [5], where the

optimal regularization parameter λ is determined using in

this case threefold cross-validation on a distinct validation

set.

2.1. CNNs as reservoirs

There exist many CNN models, but here we use a space-

invariant model where every cell is connected to its eight

neighbours using the same weight template. The cells are

further characterized by a piecewise linear output func-

tion, and the network operates in a discrete time simulation

mode. With these assumptions, the differences between the

CNN and the traditional reservoir setup is twofold:

• Instead of a randomly connected network, the cells

are connected in a regular 2D lattice, with a space-

invariant weight template.

• The output nonlinearity is a piecewise linear function

instead of the traditional smooth tanh function.

These two restrictions can easily be incorporated into a

simulation model, and we can thus simulate a CNN as

reservoir using only adjustments to the network topology

and nonlinearity. The input signal is connected to the CNN

cells using a random input connection matrix - as with tra-

ditional reservoirs - where here the connection weights are

randomly set to .1 or -.1.

We also validated the simulation results on actual hard-

ware. For this, we used an ACE16k chip [3] with 128x128

cells and a weight precision of 8 bits. However, for com-

putational reasons we only use a center 8x8 grid of nodes

leaving the other cells inactive. When making the transition

from the software simulation to actual hardware, additional

differences need to be noted:

• The limited precision of the template weights : the

weights are represented internally as 8 bit digital val-

ues.

• The chip is built on analog VLSI technology, which

introduces additional noise and other effects such as

thermal variation.

2.2. Studied tasks

We have evaluated the performance of the system on two

machine learning tasks: a simple academic task and a more

demanding real-world problem.

Signal classification The objective is to classify a one-

dimensional input signal. The signal can be either a saw-

tooth or square signal with the same period so the reservoir

cannot use the period to discern between the instances of

the signal, and the desired output is a onedimensional value

indicating the correct signal type at every timestep coded as

+1 and -1. The transitions between both signal types occurs

at random moments, so the main difficulty of this task oc-

curs on the transition moments between the signals, where

the reservoir has to detect a change in the signal character-

istics very quickly. The error is computed using a zero-one

loss function at every timestep.

Isolated digits recognition This real world problem

consists of the classification of isolated digits zero to nine

spoken by two different speakers, where each digit was ut-

tered ten times resulting in a total dataset of 200 speech

samples. The speech was preprocessed using a biological

model of the human ear resulting in a 86-dimensional input

vector for every 16ms of speech. The desired output is a 10-

dimensional vector, one for every digit. The performance

of the system is expressed as word error rate (WER), which

is the fraction of misclassified digits.

3. Experimental results and discussion

3.1. Sweeping the parameter space

In order to reduce the parameter space we opted to use

a symmetric template with only three distinct weight val-

ues: diagonal, lateral (horizontal and vertical) and self-

recurrent. Thus, we were able to do a full sweep of the

interesting part of the threedimensional parameter space.

Fig. 1 on the left hand side shows simulation results for

the signal classification task as the diagonal, lateral and

self-recurrent weights are varied. To the left, the error is

shown, and to the right the variance of the error due to

the variation of the remaining weight. The two top figures

show that positive diagonal weights are beneficial, but that

only the magnitude and not the sign of the lateral weights

matters. Additionally, the middle row shows that posi-

tive diagonal weights require small negative self-recurrent

weights and vice versa.

The same figure on the right hand side shows the same

plots for the speech recognition task. The aspect of the fig-

ures is less noisy, indicating a smoother error surface. Also,

in all three plots a symmetry is apparent which means that

only the absolute value instead of the sign of the weights

is important. The top plot shows that the value of the lat-

eral weights have a bigger impact on performance than the

diagonal weights. Interestingly, the middle plot shows that

the values of the self-recurrent and diagonal weights are re-

lated performance-wise, as indicated by the diagonal ridge
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Figure 1: Simulation results for the signal classification task (left) and speech recognition task (right) as a function of the

template parameters. The template is symmetric - with the lateral (horizontal and vertical), diagonal and self-recurrent

weights being three separate parameters. In the left column the mean error on the testset is shown, in the right column the

variance on the error due to changes in the remaining weight.

of optimal performance. Finally, the variance of the perfor-

mance is almost everywhere inversely related to the error,

except in the middle area of the bottom plot which is thus

the optimal region with regards to performance and robust-

ness.

3.2. Template optimization with Coupled Simulated

Annealing

Next, we used a global optimization technique called

Coupled Simulated Annealing (CSA) [6] for the optimiza-

tion of the CNN template, both in simulation and on the

actual chip.

Traditionally, reservoirs are randomly constructed recur-

rent networks of nonlinear nodes, where the interconnec-

tion weights are drawn from a certain distribution - usually

Gaussian. In the case of CNNs however, the interconnec-

tion structure is quite specific and the parameter space is far

less-dimensional than for general reservoirs. This allows

the use of search-based optimization techniques. Here, we

use an extension of the well known technique of Simulated

Annealing (SA), which uses several coupled SA processes

running in parallel. CSA couples these parallel classifiers

by their acceptance probabilities, which results in a better

overall performance and less sensitivity to the initial con-

ditions. For the experiments here, the initial temperature

was set to 1, the number of parallel probes to 5 and the

maximal number of iterations to 1000. Figure 2 shows a

schematic view of the different components involved in the

experiments. In case the experiments are done in software,

the whole simulation, evaluation and optimization process

is done using Matlab. For experiments on chip, the input

timeseries are transformed into avi files with a single frame

per timestep, and the resulting dynamic response from the

chip is also saved as an avi file, which is then transformed

back to the internal representation necessary for training

and simulation. In both cases, the result of the evaluation

step - i.e. the error on the test set - is used by the Coupled

Simulated Annealing module to adjust the template.

Since CSA is a probabilistic algorithm, the parameter

space is sampled in a non-uniform manner. Additionally,

our experiments show that for random templates, the error

surface is quite complex. This makes it difficult to visualize

the results for the optimization process. We therefore only

mention the optimal performances here.

On the speech recognition task, running the CSA opti-

mization on our simulation model yielded a minimal error

of 3.6%, and the same algorithm on the chip achieved a

minimal error of 6%. We did notice a larger occurrence of

badly performing templates on the chip (i.e. with large er-

ror rates), which is probably caused by the fact that those

templates are less robust to the noise on chip, which renders

the task more difficult. As a means of comparison: the av-

erage performance of a standard reservoir of the same size

is 2%, and the direct application of a linear readout layer

to the feature vectors - i.e. without a reservoir in between -

gives a performance of 11%.
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Figure 2: Overview of the experimental setup.

On the signal classification task, the optimal template

found by the CSA optimization core attained a performance

of 1% in simulation, and an even better performance of

0.1% on chip. Here, standard reservoirs give a similar per-

formance to the CNN simulation model of 1%, and the di-

rect application of the linear readout to the input is not able

to solve the task at all since it requires at least some short-

term memory. The fact that the speech task performs worse

on chip as opposed to the signal classification task, is pos-

sibly due to the fact that the on-chip noise has a negative

effect on the speech recognition task whereas for the sim-

ple signal classification task it actually helps discerning be-

tween the signals, but further work is needed to make this

conclusive.

4. Conclusions and future work

We have presented a novel, proof-of-concept use of Cel-

lular Neural Networks in the general framework of Reser-

voir Computing. This framework extends the possible ap-

plication areas for CNNs substantially. Reservoir Com-

puting offers a simple method for using dynamic nonlin-

ear media such as CNNs for machine learning tasks and

as such it enables the use of the impressive computational

power and speed of current analog VLSI implementations

for a broad class of machine learning tasks such as speech

recognition. We have shown a proof of concept system

and applied it to both an academic and a real world task,

demonstrating consistent and competitive results compared

to our simulation model.

A possible future research direction is e.g. the imple-

mentation of the linear readout layer on chip. Currently the

computation of the readout layer is done offline in Matlab,

which requires a lot of communication between the chip

and the host computer. However, by using a multiplicative

mask on the cell outputs and then running the chip in dif-

fusion mode - which lets all cells converge to the average

activation level of the network - this can be done fast and

on-chip. Finally, it is useful to look into the possibility of

using the large body of theoretical work on the dynamic

behaviour of CNNs for guiding the search for an optimal

template, since the dynamic regime in which the reservoir

operates is quite important for its performance.
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