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Abstract– A power system is a nonlinear dynamical 

system. Understanding the dynamic behavior of a power 

system is necessary for its reliable operation. K. Noda 

proposed an equivalent mechanical model of a power 

system to help intuitively understanding power system 

behavior obtained from a mathematical model of a power 

system. The validity of the mechanical model was 

confirmed qualitatively. This study quantitatively evaluates 

the mechanical model through experiments that assess the 

accuracy of its analogy with the mathematical model. To 

this end, the steady-state and transient stability limit of a 

power system are demonstrated. The limitation on the 

mechanical-mathematical model analogy is evaluated. 

 

1. Introduction 

 

A power system is a nonlinear dynamical system. 

Stability of a power system significantly influences the 

reliability of its operation. Even smart grids cannot avoid 

stability problems, because their configuration is similar 

to that of conventional power systems. For the successful 

operation of a power system, it is necessary to understand 

the phenomena arise in a power system involved with 

power system stability. 

Traditionally, power system stability has been 

associated with generator rotor angle dynamics, which are 

described by a second-order differential equation. Power 

system stability is analytically studied on the basis of this 

mathematical model of a power system. However, 

intuitively understanding the power system behavior 

obtained from the stability study is difficult because 

electricity is invisible. 

A mechanical model of a power system may help 

understand power system behavior by representing it 

visually. K. Noda proposed a mechanical model of a two-

machine power system, which consists of a rotating mass 

and spring [1]. The validity of the mechanical model was 

qualitatively confirmed on the basis of the mathematical 

expressions of the mechanical and mathematical power 

system models [1]. Furthermore, the quantitative 

validation of the mechanical model was performed to 

assess the accuracy of its analogy with the mathematical 

model, because the electric components in a power system 

are represented by the mechanical components in the 

mechanical model [2]. The error of the mechanical model 

occurs due to springs [2]. In this study, springs are 

specially wound to have the length proportional with the 

spring tension for eliminating the error stemming from a 

finite natural length of spring. The mechanical model with 

these springs is quantitatively evaluated through 

experiments. The accuracy of the mechanical-

mathematical model analogy is assessed. To this end, the 

steady-state and transient stability limit of a power system 

in the mechanical model is demonstrated. The limitation 

on the application of the mechanical model to represent 

power system behavior is provided. 

 

2. Power System Behavior 

 

Figure 1 shows a single-phase equivalent circuit of a 

two-machine power system. This simplest system is useful 

in describing the basics of power system behavior. Power 

system stability is studied for this system. 

 

2.1. Mathematical Model of Two-machine Power 

System 

 

The dynamics of a synchronous generator are governed 

by the following second-order differential equation.  
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Where, M is the inertia constant, δ is the rotor angular 

displacement with respect to the synchronously rotating 

reference, and D is the damping coefficient. Pm and Pe are 

the mechanical power input and the electrical power 

output of a generator, respectively.  

For the two-machine power system, the real and 

reactive powers at the generator are given as functions of 

phase angle δ. 
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The power–angle (Pe–δ) characteristic in (2) gives 

nonlinearity in the power system operation. 

 

2.2. Power System Stability 

 

Interconnected synchronous machines in a power system 

are required to operate in synchronism when subjected to 

 

G M
0MVGV

X
generator motor

,eP eQ

reactance

 
Fig. 1.  Two-machine power system. 
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disturbance, and the ability to achieve this is called power 

system stability. This stability is typically classified into 

steady-state and transient, depending on the severity of 

disturbance [3]. The former is the local stability and the 

latter is the global stability. 

 

2.2.1. Steady-state Stability 

Steady-state stability is the ability of a power system to 

maintain synchronism when subjected to small 

disturbance such as gradual change in load. The steady- 

state stability can be studied by linearizing (1) about an 

operating point [4]. 

For simplicity, the two-machine power system of Fig. 1 

is integrated into a single-machine and infinite bus system. 

Linearizing (1) for constant Pm and negligible damping 

effect, we get 
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where Δ denotes a small deviation.  

The system is stable in the range of δ ≤ 90°: both roots 

of (3) are on the imaginary axis, where δ oscillation does 

not diverge. The system is unstable in the range of δ > 

90°: both roots are real, positive and negative, and δ 

results in divergence. At δ = 90°, the system is at the 

stability limit. The steady-state stability power limit is 
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2.2.2. Transient Stability 

Transient stability is the ability of a power system to 

maintain synchronism when subjected to large disturbance, 

such as a short-circuit fault on a transmission line. There 

are two commonly used methods for a transient stability 

study: time-domain simulation and energy function 

method. In the time-domain simulation method, (1) is 

solved numerically to discriminate whether the rotor angle 

increases indefinitely or oscillates and converges to an 

equilibrium point. The energy function method is a special 

case of the Lyapunov's second method and is applied to 

the transient stability study as follows [5]. 

Recognizing that Pe = Pmax sin δ, the energy function V 

(δ, ω) of the system for (1) is defined as 
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where ω = dδ/dt. Note that the damping component in (1) 

is neglected. The first term is kinetic energy and the 

second is potential energy, and δ
s
 is the post-disturbance 

stable equilibrium point. The critical energy Vcr at the 

stability boundary is equal to the system potential energy 

at the post-disturbance unstable equilibrium point δ
u
. 

The transient behavior of a single-machine infinite bus 

system is studied for a local load shedding. When the 

mechanical power input suddenly increases from an initial 

value of Pm0 to Pm, which is equivalent to a local load 

shedding, there is surplus of mechanical power input over 

electrical power output. The post-disturbance stable δ
s
 and 

unstable δ
u
 equilibrium points are given by 
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The initial conditions at the onset of the disturbance are 

ω = 0 and δ = δ0, where δ0 is the operating point before 

the onset of disturbance. Then, the energy Vs of the system 

is Vs = V (δ0, 0). The critical energy Vcr at the stability 

boundary of the system is Vcr = V (δ
u
, 0). 

If Vs is less than Vcr, then the system is stable; if it is 

greater, then the system is unstable, that is, δ diverges and 

the generator falls out of step. At Vs = Vcr, the system is at 

the stability limit and we get the following relationship. 
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Solving (7) for δ
s
, the maximum local load shedding 

ΔPmax is given by 
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3. Equivalent Mechanical Model of Power System 

 

This section briefly reviews the mechanical model of 

the two-machine power system. The qualitative analogy 

between the mechanical and the mathematical models is 

derived on the basis of the correspondence in their 

mathematical expressions. Then, the behavior of the 

power system in the mechanical model is illustrated. The 

details are covered in [2]. 

 

3.1. Mechanical Model of Two-machine Power System 

 

Figure 2 shows the schematic diagram of the 

mechanical model of the two-machine power system 

developed by K. Noda [1]. Rotating disks G and M 

represent the generator and motor, respectively. They 

pivot independently on a common axis and are 

interconnected by three springs. The three springs are 

equiangularly placed on the fringe of the disks to 

represent a balanced three-phase system. The rotating 

handle and weights represent mechanical power input and 

output of the generator and motor, respectively.  

The physical parameters of the mechanical model are 

summarized in Table I. In this study, springs are fabricated 

so that they have a proportional relationship between the 
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Fig. 2.  Schematic diagram of mechanical model. 
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TABLE I. PHYSICAL PARAMETERS OF MECHANICAL MODEL 

disk radius: R G , R M 7.30 × 10
-2

 [m]

winch radius: R W 2.50 × 10
-2

 [m]

distance: L 2.45 × 10
-1

 [m]

combined moment of inertia of disk M and winch: J 7.36 × 10
-4

 [kg∙m2
]

dynamic friction torque of disk M: μ 2.99 × 10
-4

 [N∙m]

maximum static friction torque of disk M 6.1 × 10
-4

 [N∙m]  
 

spring tension and the spring length [2] to eliminate the 

errors due to a finite natural length of spring. The 

relationship between the spring tension F(δ) [N] and the 

spring length l(δ) [m] is measured as F(δ) = 8.67 × l(δ).  

 

3.2. Analogy of Mechanical Model with Mathematical 

Model 

 

The dynamics of the disk are governed by the 

following second-order differential equation. 
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Where, J is the moment of inertia of the disk and Tm and 

Te are the torques acting on the disk originating from the 

rotating handle or weights and from the spring tension, 

respectively. μ is the dynamic friction torque and δ is the 

displacement angle between the two disks. By comparing 

(10) with (1), correspondence between parameters and 

variables are found. 

The mechanical–mathematical model analogy 

proposed by K. Noda is described [6]. The spring length is 

expressed as a function of δ. 
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Where, RG and RM are radii of disks G and M, respectively, 

and L is the distance between the two disks. 

The spring tension F(δ) acting on disk G can be 

decomposed into tangential Fr(δ) and centripetal Fθ(δ) 

components. The product of Fr(δ) and RG gives the torque 

Tr(δ) acting on disk G. Similarly, the product of Fθ(δ) and 

RG gives the imaginary torque Tθ(δ). 
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Where, S ≡ l(δ)/ F(δ). When F(δ) is proportional to l(δ), S 

= 1 / k where k is a spring constant. 

Comparing (12) with (2), the following correspondence 

exists between the parameters and variables in the 

mechanical and mathematical power system models: 

 Radii RG and RM correspond to voltages VG and 

VM, respectively.  

 Torque Tr(δ) corresponds to real power PG. 

 Imaginary torque Tθ(δ) corresponds to reactive 

power QG. 

 The reciprocal of sprig constant S corresponds to 

transmission line reactance X. 

Thus, the analogy between the mechanical and 

mathematical power system models is clearly shown, on 

the basis of the correspondence of their differential and 

algebraic equations. 

 

3.3. Behavior of Power System in Mechanical Model 

 

The behavior of a power system subjected to small 

disturbance is simulated in the mechanical model as 

follows. As weight is added in small increments, torque Tr 

increases and disk M rotates with δ gradually increasing 

from 0°. Tr reaches its maximum value at δ = 90°. As 

more weight is added, the torque due to the weight acting 

on disk M will not balance Tr. Then, disk M is accelerated 

and δ increases, resulting in three springs intersecting at 

the midpoint. The corresponding power system is unstable. 

The maximum torque obtained in this manner corresponds 

to the steady-state stability power limit of a power system. 

The mechanical model can also simulate the transient 

behavior of a power system following local load shedding. 

An abrupt load change is simulated by suddenly adding a 

large weight ΔW. If ΔW is small, disk M rotates and stops 

at a new equilibrium point. If ΔW is very large, disk M is 

accelerated and δ increases indefinitely, resulting in the 

three springs intersecting at the midpoint. The maximum 

increase in torque obtained in this manner corresponds to 

the maximum local load shedding of a power system. 

 

4. Results and Discussion 

 

This section quantitatively evaluates the mechanical 

model with the mathematical model by a comparative 

study on the steady-state stability power limit and the 

maximum local load shedding. 

 

4.1. Experiment Results 

 

4.1.1. Mechanical Experiment Results 

The steady-state stability power limit and the maximum 

local load shedding in the mechanical model are 

experimentally obtained as in Section 3.3. The maximum 

local load shedding is conducted for different initial 

conditions δ0 of 20.0° and 40.0° in the mechanical 

experiment. The results are shown in Table II.  

 

4.1.2. Numerical Experiment Results 

The parameters of the mathematical model are set to be 

equivalent to the physical parameters of the mechanical 

model. The steady-state stability power limit and the 

maximum local load shedding in the power system model 

are obtained as in Section 2.2. The maximum local load 

shedding is evaluated with the energy function method for 

different initial conditions δ0 of 20.0° and 40.0°. The 

Newton–Raphson method is used to solve (7). The 

maximum local load shedding is also evaluated with the 

time-domain analysis for respective δ0 to allow for the 

damping effect. Equation (1) is solved by the fourth-order 

Runge–Kutta method with a time step of 0.01 sec. The 

results are shown in Table II. 
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4.2. Discussion 

 

4.2.1. Steady-state Stability 

The error of the mechanical model to the mathematical 

model is 4.3 [%]. The error can be caused by the static 

friction torque. When the static friction torque (0.061 

[pu)) is considered, the error reduces to 3.0 [%]. Because 

the error is small, within a few percent, the mechanical 

model validly represents the steady-state stability power 

limit of a power system. 
 

4.2.2. Transient Stability 

The mechanical model provides the higher maximum 

local load shedding than the mathematical model. The 

error of the mechanical simulator for the initial condition 

of δ0 = 20.0° and 40.0° are 9.1 and 25 [%], respectively. 

Because the error is large, it is not quantitatively validated. 

The error of the mechanical simulator can be attributed 

to the dynamic friction torque which is not considered in 

the numerical experiment with the energy function 

method. When the dynamic friction torque is considered, 

the errors for δ0 = 20.0° and 40.0° reduce to 4.3 and 15 

[%], respectively. However, a large error remains for a 

large δ0. This may be attributed to the static friction torque 

in the mechanical model. The influence of the friction on 

the behavior of the mechanical model is difficult to 

evaluate and the static friction torque is not considered in 

the mechanical model equation and in the discussion of 

the analogy.  

Because the error of the mechanical model at δ0 = 20.0° 

is small, within a few percent, the mechanical model is 

quantitatively validated for a small δ0. However, the error 

in the mechanical model occurs due to the friction torque. 

 

5. Conclusions 

 

Because electricity is invisible, it is difficult to 

intuitively understand the power system behavior obtained 

from a stability study. In this study, we described the 

mechanical model of a power system, which provides a 

means of visualizing power system behavior. The 

qualitative analogy between the mechanical and 

mathematical power system models was derived, on the 

basis of the correspondence in their mathematical 

expressions.  

In this study, springs were fabricated so that the spring 

tension was proportional to the spring length in order to 

eliminate the error of the mechanical model due to a finite 

natural length of spring. A quantitative evaluation of the 

mechanical model with the developed springs was 

performed by comparing the mechanical experiment 

results with the numerical experiment results of the 

mathematical model. The mechanical model was 

quantitatively validated in expressing the steady-state 

stability power limit. However, the error of the 

mechanical model stemming from the dynamic friction 

torque still remained in demonstrating the maximum local 

load shedding. The error was reduced with considering the 

dynamic friction torque and the mechanical model was 

quantitatively validated for initial operating point with 

small power angle. 

The mechanical model can be used to aid in intuitively 

understanding power system behavior and the concept of 

power system stability. 
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     TABLE II 

MECHANICAL AND NUMERICAL EXPERIMENTS RESULTS 

          

4.8

δ0=20.0° 2.4 2.2
*3

2.3
*4

δ0=40.0° 1.5 1.2
*3

1.3
*4

mathemtaical model [pu
*2

]mechanical simulator [pu
*1

]

steady-state stability power limit

maximum local load shedding

4.6

 

                 *1 1 [pu] = 1×10-2 [N∙m], System base = 100 [MVA], Voltage base = 500 [kV], VG = VM = 1 [pu] 

                 *2 X = 0.216 [pu], M = 7.63 [MJ/rad] and D = 2.99, *3 energy function method, *4 time-domain analysis 
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