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Abstract—This study proposes a method of solv-
ing the shortest path problem (SPP) using the adapt-
able independent-minded particle swarm optimiza-
tion (AIPSO). The system of AIPSO is almost the
same as PSO, however, a connection relationship be-
tween particles of AIPSO dynamically changes with
each iteration. We apply the proposed method using
AIPSO to solving two kinds of SPPs derived by the
Small-world network and the Waxman network. We
confirm that AIPSO can significantly improve the op-
timization performance from the basic PSO.

1. Introduction

The shortest path problem (SPP) is one of the most
fundamental problems in the graph theory, and it is
a familiar optimization problem for us. Examples of
SPP include car navigation system, searching system
of train connections and so on. Many researchers have
investigated SPP and its solutions and SPP has got-
ten complex with the developments of communication
tools, computer science and transport systems. These
extended SPPs include multi-objective SPP, traveling
salesman problems (TSPs) and the K-th shortest path
problem, and most of the extended SPPs are NP-hard
problems.

The most famous method of solving the simple SPP
is Dijkstra’s algorithm [1]. However, since the Dijk-
stra’s algorithm cannot solve the extended SPPs be-
ing NP-hard problems, it is important to investigate
various methods of solving SPPs.

The particle swarm optimization (PSO) [2] is a hot
topic as an optimization method, and PSO is based
on birds and fish flock behavior that search for foods.
The most attractive feature of PSO is that it re-
quires less calculating equations, and a SPP solution
method using PSO has been proposed [3]. However,
since PSO is easily trapped into local optima when it
solves complex problems, many improved PSOs have
been proposed. We therefore pay attention to the
adaptable independent-minded particle swarm opti-
mization (AIPSO) [4]. The system of AIPSO is almost
the same as PSO, however, a connection relationship
between particles of AIPSO dynamically changes with

each iteration. AIPSO can significantly improve the
optimization performance of the basic PSO although
AIPSO does not need any additional parameter. This
study modifies the conventional method using PSO
and proposes a method of solving SPP using AIPSO.
We investigate an effectiveness of the proposed method
using AIPSO by applying it to solving two kinds of
complex SPPs derived by the Small-world network and
the Waxman network.

2. Adaptable independent-minded particle
swarm optimization (AIPSO)

PSO is one of the optimization methods based on
the swarm intelligence. Kennedy and Eberhart de-
signed PSO inspired by the flock behavior of birds
and fish in nature. PSO searches an optimum solution
by using a group of solutions called “particle swarm”.
Each particle searches for the optimum solution with
flying around a multi dimensional optimization space.
PSO has been applied to various problems because it
requires less computational and a few lines of codes,
and various modified PSOs have been proposed.

AIPSO is one of the improved PSOs. A difference
between the basic PSO and AIPSO is a connection re-
lationship between the particles as shown in Fig. 1.
AIPSO has almost the same behavior as the basic
PSO, and the particles are affected only by connected
particles. In the basic PSO, the connection relation-
ship between the particles are not changed throughout
a simulation, in other words, always full-connected, as
shown in Fig. 1(a). However, the connection relation-
ship in AIPSO dynamically changes with each iter-
ation as shown in Fig. 1(b). Whether a particle i is
affected by the swarm is stochastically-judged at every
iteration and every dimension:{

i ∈ SCd, with probability Cp(t)
i ∈ SId, with probability 1− Cp(t),

(1)

where t is the iteration, and SCd and SId are sets of
connected and isolated particles in dth dimension, re-
spectively. The connection probability Cp(t) is a time-
varying linear function as described in

Cp(t) = (CpT − Cp0)
t

T
+ Cp0 , (2)
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: connected particle
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Iteration t
: isolated particle : connected particle
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Figure 1: Connection relationship between particles
depending on the iteration. (a) PSO. All the parti-
cles are always connected each other. (b) AIPSO. The
connected particles are increased with time due to an
increase in the connection probability.

・・・

d = 1  d = 2  d = M・・・・・・
: isolated particle : connected particle

Figure 2: Example of a connection relationship in
AIPSO at each dimension. AIPSO has different con-
nection relationship at each dimension.

where T is the maximum number of the iteration, and
CpT

and Cp0 are the maximum and minimum value
of Cp(t), respectively. Figure 2 shows an example of a
change in the connection relationship depending on the
dimension. AIPSO has different connection relation-
ship at each iteration and each dimension in contrast
to the basic PSO being always fully-connected.

Each particle i (i = 1, 2, · · · , N) has two informa-
tion; position vector Xi = (xi1, xi2, · · · , xiM ) and ve-
locity vector V i = (vi1, vi2, · · · , viM ). AIPSO searches
the solution by updating the particle information ac-
cording to

vt+1
id =


ωvtid + φ1r1(xpid

− xt
id)

+ φ2r2(xld − xt
id), i ∈ SCd

ωvtid + φ1r1(xpid
− xt

id), i ∈ SId,

(3)

xt+1
id = xt

id + vt+1
id , (4)

where ω is the inertial weight, φ1 and φ2 are the
acceleration coefficients, r1 and r2 are independent
random numbers in the rage [0, 1], Xpbesti =
(xpi1 , xpi2 , · · · , xpiM

) is the past best position of the

particle i, and Xlbest = (xl1 , xl2 , · · · , xlM ) is the best
position among all the connected particles.

3. Shortest path problem (SPP)

SPP is defined as follows. An undirected graph
G = (M,E) comprises a set of nodes M and a set
of edges E ∈ M ×M connecting nodes in M . Corre-
sponding to each edge, there is a non negative number
cyz representing the cost of the edge from a node my

to a node mz. A path from a source node ms to a
destination node md is a sequence of nodes PATH =
(ms,mj , · · · ,md). The path must not repeat the same
node index in the sequence. For example, in Fig. 3, a
path from the node 1 to the node 7 is represented as
(1, 4, 2, 5, 7). A goal of SPP is to find a path between
two nodes having the minimum total cost.

In this paper, SPP is solved by using PSO and
AIPSO. In PSOs, the particle information is updated
depending on the objective function. The objective
function of the particle i is defined as

fi =

Ni−1∑
j=1

cyz,

y = PATHi(j), z = PATHi(j + 1),

(5)

where PATHi is the set of sequential node indexes for
the particle i, Ni = |PATHi| is the number of nodes
that constitutes the path represented by the particle
i, and cyz is the cost of the link connecting the node
y and the node z. Therefore, the objective function
fi takes the minimum when PATHi is the shortest
path. If the path made by a particle i is an unsuccess-
ful path, its objective function value fi is assigned a
penalty value (large value) so that the particle i does
not have an influence on other particles at next itera-
tion.

4. Application of AIPSO to SPP

The main issue in applying AIPSO to SPP is how
to combine the particle information with the network.
We correlate the particle information of AIPSO with a
node priority considering the connection relationship
of the network.
⟨ STEP1 ⟩ Initialization

An iteration count t is initialized as t = 0, the par-
ticle position vectors X are initialized at random in
range [−1.0, 1.0] and the velocity vectors V are ini-
tialized V = 0.
⟨ STEP2 ⟩ Update the connection relationship

The connection relationship between the particles is
updated according to Eq. (1).
⟨ STEP3 ⟩ Determine the node priority

A node priority P i = (pi1, pi2, · · · , piM ) are an im-
portant variable to create the path from a source node
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Figure 3: Network model (M = 7)

1 2 3 4 5 6 7
0.1 -0.4 0.7 0.6 0.3 0.5 0.2

k = 0, PATHi = {1}
⇓

1 2 3 4 5 6 7
∞ -0.4 0.7 0.6 0.3 0.5 0.2

(c12pi2= -4, c13pi3= 9.8, c14pi4= 7.2)

k = 1, PATHi = { 1, 2}
⇓

1 2 3 4 5 6 7
∞ ∞ 0.7 0.6 0.3 0.5 0.2

(c24pi4= 9, c25pi5= 2.4)

k = 2, PATHi = { 1, 2, 5}
⇓

1 2 3 4 5 6 7
∞ ∞ 0.7 0.6 ∞ 0.5 0.2

(c57pi7= 1.8)

k = 3, PATHi = { 1, 2, 5, 7}

Figure 4: How to determine the path from the source
node 1 to the destination node 7. The numbers
1, 2, · · · , 7 denotes the node indexes, and the numbers
under the node index are its node priority. Assuming
Xi = P i = (0.1,−0.4, 0.7, 0.6, 0.3, 0.5, 0.2), we obtain
a path PATHi = {1, 2, 5, 7}. The objective function
fi is 27.

to a destination node. The node priority of the par-
ticle i is correlated with the particle information by
using a copy of Xi, as P i = Xi.

⟨ STEP4 ⟩ Making the PATH

We make the path from a source node to a destina-
tion node using the node priority P i. Figure 4 shows
an example of creating a path corresponding to a net-
work shown in Fig. 3. We substitute the source node
for PATHi(1). Next visit node PATHi(k) is se-
lected from the connecting nodes according to

PATHi(k) = argmin
d

{pid × cjd} (6)

where cjd is the cost of edge from a node j to d. The
value ∞ is assigned to the node priority correspond-
ing to the next visit node to avoid selecting the node,

Table 1: Simulation results
Success rate [%] Error rate [%]
PSO AIPSO PSO AIPSO

Small-world
66 78 6.02 4.00

network
Waxman

67 89 5.88 1.37
network

which has been visited, again. We continue these pro-
cesses until the destination node is visited.
⟨ STEP5 ⟩ Evaluation of the objective function

We evaluate the objective function fi of each par-
ticle i by calculating the total path length according
to Eq. (5). If the particle i fails to make the path,
fi = ∞. Here, if there is no visitable node before the
particle i has not arrived yet at the destination node,
it is defined as the particle i failed to make a path.
⟨ STEP6 ⟩ Update particle information

The velocity V i and position Xi are updated ac-
cording to Eq. (3) and Eq. (4), respectively.
⟨ STEP7 ⟩ Iteration

We repeat the steps from STEP2 to STEP6 until
t = T is satisfied.

5. Computer simulation

We apply the proposed SPP solving method using
AIPSO to two kinds of complex networks derived by
Small-world’s [5] and Waxman’s [6] method. The pro-
posed solving method is compared with the conven-
tional method using the basic PSO. For respective
SPPs, the number of nodes M is 100, the number of
edges is set as edge = 300 at the Small-world network
and as edge = 279 at the Waxman network. The edge
costs are determined at random. We used following
parameters: N = 30, CpT = 1.0, Cp0 = 5× 10−4, φ1 =
φ2 = 1.494 and ω = 0.729. We use different maxi-
mum iteration T depending on the network, and it is
T = 4000 for the Small-world network and is T = 3000
for the Waxman network.

Table 1 shows results obtained by 100 simulations
using different destination and source nodes selected
at random. The error rate is determined by

Error rate =
fg − fopt

fopt
[%] (7)

where fg is the objective function value of the global
best particle obtained by the simulation and fopt is the
optimal solution derived by using the Dijkstra method.

From this table, we can see that AIPSO obtains
higher success rate and lower error rate than PSO, at
both the networks. On the other hand, the improve-
ment rate of AIPSO from PSO is different depending
on the networks. This is because the total number of
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Figure 5: Convergence process. (a) Small-world net-
work. (b) Waxman network.

edges in the network and the number of edges leaving
from one node are different between two kinds of net-
works. Therefore, it is considered that SPP derived by
the Small-world network has more local optima than
the Waxman network.

In order to investigate a reason why AIPSO can ob-
tain better results than PSO, we consider convergence
processes of each method as shown in Fig. 5. In this
figure, a horizontal axis shows the iteration t, and a
vertical axis shows the error rate from the optimum
solution fopt. We can see that the convergence speed
of AIPSO is slower than PSO. This is because AIPSO
has dynamically-changed connection relationship be-
tween the particles. This effect increases the diversity
of the particles, and because it avoids a premature
convergence, AIPSO keeps on searching even in late
stage of the simulation. This means that AIPSO has
the ability of both the local search and global search
and is hard to be trapped into the local optima.

From these results, we can conclude that the pro-
posed method using AIPSO for solving SPP is more
effective than the conventional method using PSO.

6. Conclusions

This study has proposed an application of AIPSO
to the method for solving SPP. We have considered
two kinds of SPPs derived by Small-world and Wax-
man method. The simulation results have shown that

AIPSO improves the optimization performance from
PSO because AIPSO is hard to be trapped into the lo-
cal optima. These confirmed results mean that AIPSO
is effective not only for the continuous optimization
problems such as the benchmark functions, but also
for discrete optimization problems.
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