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Abstract—We have studied fractal nature of patterns
given by the directional coloring for chaotic attractors.
With this method, unstable periodic points are visualized
as concentrated points or crossing points in the state space.
A fractal pattern around the specific unstable fixed point
are identified as a formula derived from relationship among
neighbor unstable periodic points. In this paper, we try to
model an accurate formula giving locations of unstable pe-
riodic points. Higher periodic points are predicted by the
obtained formula. Some numerical examples are shown.

1. Introduction

Given two-dimensional discrete dynamical system, it is a
burden toil to pick up unstable periodic points (abbr. UPPs)
embedded in a chaotic attractor. We have studied fractal na-
ture of patterns given by the directional coloring for chaotic
attractors. With this method, UPPs are visualized as con-
centrated points or crossing points in the state space. A
fractal pattern around the specific UPP are identified as a
formula derived from relationship among neighbor UPPs.
In this paper, we try to model an accurate formula giving
locations of UPPs. Higher periodic points are predicted
by the obtained formula. Some numerical examples are
shown.

2. Invariant Patterns

Let us consider the following two-dimensional irre-
versible discrete system:

xk+1 = f (xk) (1)

where,x = (x, y), and

f (xk) =

(

yk + axk

x2
k + b

)

. (2)

It exhibits a chaotic attractor ata = 0.4, b = −1.24, and
theoretically many UPPs are embedded within it. Figure 1
show an 8-periodic and a 40 periodic orbits in the chaotic
attractor. In general, locating UPPs are not so easy task for
a given chaotic attractor and parameter values even if the
system equation is explicitly obtained.

The directional coloring method[1] is a visualization
scheme of chaos attractors that each mesh point in the state
space is colored by the direction between the current point
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Figure 1: Unstable periodic points,a = 0.4, b = −1.24.
Orange: 11 periodic, blue: 40 periodic orbits.

and itsn-mapped point. Figure 2 shows the directional col-
oring result for Eq. (1) witha = 0.4, b = −1.24. Among
(a) to (c), it is confirmed that a portion circled by a dashed
line rotates and shrinks about the fixed point located in the
center asn increases. In the past works[2][3], by using im-
age processing technology, it is clarified that color concen-
trated or crossing points can be candidates UPPs. Figure
3(a) shows a magnified picture around the fixed pointx∗

with evaluation of each 37-mapped points by directional
coloring. The color-crossing points are specified by the ar-
rows. points in which every color is terminated is specified
by arrows, and they are candidates of UPPs. In fact, by
using error collection method, accurate locations of UPPs
are obtained from these candidates[1]. Notice that the point
labeled byc37 is the nearest 37-periodic unstable point for
the fixed forx∗. Figure 3 (b) and (c) show the locations
of c38 and c39 for n = 38 andn = 39, respectively. Asn
increases, patterns are rotated, shrunk, and the new UPPcn

is generated.

The rough location ofcn is computed by an edge detec-
tion method[3], and a further error correction is done by
Newton’s method. We set an error tolerance forcn is less
than 10−15.

3. Fractal in patterns

Let us defineǫn = ||cn−x∗||2. Thisǫ shrink exponentially
as n increases. In Ref. [3], we derived a formula of the
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(a) n = 13 (b)n = 15 (c)n = 17

Figure 2: Patterns obtained by the directional coloring for
Eq. (1).

(a) n = 37 (b)n = 38 (c)n = 39

Figure 3: Pattern rotation and newcn generation. Arrows
indicate other candidate of UPPs.

absolute value ofǫn by sampling measurement:

|| log10 ǫn||2 ≈ ax + b (3)

where,a and b are constants, and they are depended on
the parameter values. We compute them by the linear fit-
ting with numerical solutionscn. In the following, fitting
parameters are obtained by the Marquardt-Levenberg algo-
rithm (nonlinear least square estimation).

Figure 4: The definition ofǫk andθk.

In Fig. 5(a) shows actual value of|ǫn| and its fitted line.
The red line is approximated as log10 ǫn ≈ −0.116n + 0.4.
A good agreement between them is confirmed.

Let us defineθk as an angle determined byǫk+1 andǫk.
Plotted points in Fig. 5(b) indicate actual values ofθn. The
points alternatively jump up and down, thus it makes like a
quasi periodic wave form (beat). We attach two sinusoidal
curve to fit the envelope of the wave. The green and red
lines are modeled as:

θn = (−1)nA sin(ωn + φ) + b (4)

where,A = 0.303,ω = 0.306,φ = −0.588π, b = 1.42.
Over n > 25, plotted points and lines have a good agree-
ment. From Eq. (4), the averaged angular is constant(b ≈
0.45π; the dashed line in Fig. 5(b)). These results specifies
enough evidence of an existence of a logarithmic spiral,
thus fractal nature is confirmed in the given chaotic attrac-
tor.

Many color-crossing points observed in Fig. 3 are si-
multaneously generated by increment ofn. Since relative
assignment of these points can be located fromck in the in-
variant pattern, it is possible to locate and enumerate other
UPPs by using an appropriate image processing.
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Figure 5: Distributions of the radiusǫn and angleθn by
Eq.(3) and (4). Plotted points indicate numerical values of
ǫ or θn.

4. Locating of UPPs

As an application of above approximation, in this paper,
we try to derive a formula that locates the UPPs embedded
in a chaotic attractor. Some modifications are applied for
Eqs. (3) and (4) by using more precise fitting scheme, and
we have the following equations:

c̃n = x∗ + σn

(

cosS θn

sinS θn

)

, S θn = ψ +

n−1
∑

i=0

θi. (5)

where,ψ is the absolute angle betweenx∗ andc0. Thenσn

andθn are given as follows:

σn = 10an+b+(−1)nA sin(ω1n−η1)

θn = (−1)nB sin(ω2n + η2) + d,
(6)

These functions can specify accurate locations of UPPs ˜cn

by only substitution ofn.
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4.1. Example 1

Suppose we fix the parameter values for Eq. (1) asa =
0.4, b = −1.24, then we obtain the following parameters
by using fitting method:a = −0.1156,b = 0.4, A = 0.07,
ω1 = 0.312,η1 = 0.16π andB = 0.31,ω2 = 0.306,η2 =

−0.572π, d = 1.418. Figure 6 shows matching of ˜ck and
ck. The error between them is invisible.

It it noteworthy that the frequency componentsω1 and
ω2 are independent for the multiplier (eigenvalues) of the
fixed pointx∗.
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Figure 6: Relationship betweenn and ǫn for Example 1.
Plotted points indicate numerical values ofǫ.

Both ǫk andθk are affected by sinusoidal functions ofk,
but they are not synchronized each other. We once tried
an amplitude modulated wave forǫk andθk models, but it
failed. Two alternative (anti-phase) sinusoidal functions are
essential.

Now we obtain an analytic formula that gives UPPs in
the chaos attractor. If we want to know the location ofck,
the formula resulting the accurate location with specifying
only k is very useful.

Figure 7 shows locations of UPPs. In this simulation, we
useθ40 instead ofψ. Each vertex of the red line show the
location of ck whose accuracy is guaranteed by Newton’s
method. While vertices on the black line are locations ˜ck.
Please note that these lines do not show the part of the so-
lution orbit like Fig. 1, but demonstrate a fractal nature of
the chaotic attractor. In fact, a line in Fig. 7 forms a loga-
rithmic spiral given by Eq.(6), i.e.,ǫk andθk surely keep a
certain scale. Note also thatψ in Eq. (5) is initialized by
the value ofc40 for this case.

4.2. Example 2

When we fix the parameters asa = −0.1,b = −1.7, a dif-
ferent invariant pattern of the directional coloring is shown
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Figure 7:ck (vertices of the red line) and ˜ck (vertices of the
black line).
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Figure 8: An enlargement of Fig. 7.ck, 95 < k < 130 are
visualized.

in a chaotic attractor. Figure 9 depicts invariant patterns
with n = 34 andn = 35 of the directional coloring around
a UPPx∗ = (−0.865097,−0.951606). The nearest radical
point ck is also an unstablek-periodic point.

For this example, Eq.(6) also acts reasonable. We have a
very good fitting between ˜cn andcn with this model. The
fitting parameters are as follows:a = −0.1185,b = 0.41,
A = −0.07,ω1 = 0.08,η1 = 0.477π, B = 0.27,ω2 = 0.08,
η2 = 0.0, d = 1.61.

Figure 10 expresses agreement between ˜ck andck. The
error between them is invisible. Figure 11 shows estimation
errors defined as follows:

eǫ = log10 ||ǫn|| − log10 ||ǫ̃n||

eθ = |θn − θ̃n|.
(7)

where, ˜ǫn = c̃n − x∗, andθ̃n is an angle determined by ˜cn

and c̃n+1. Note thateǫ is on the logarithm scale, thus actual
error betweencn and c̃n becomes exponentially small asn
increases. Actually−14 in logarithm scale approaches the
limitation of a double precision register.

The mismatch betweenθn andθ̃n can be evaluated good,
that is, it is confirmed that the approximated analytic equa-
tion Eq. (6) describes the locations of UPPs. The error
included in c̃k comes seems to be modeling errors in Eq.
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Figure 9: A directional coloring result for Eq. (1) with
a = −0.1, b = −1.7. (a):n = 34, (b):n = 35.

(3), (4) and (5), however, the oscillation behavior in Fig11
implies existence of one or more frequency components.
We should try to add more sinusoidal term in Eq.(6).

5. Conclusions

In this work, a fractal nature of a chaos in a two-
dimensional discrete equation is shown. The analytic for-
mula locating UPPs is derived and estimation errors are
discussed. We only pay attention to the center 1-periodic
UPP, this method also applicable for any UPP. Applying
this method to other maps is a future problem.
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Figure 10: Relationship betweenn andǫn for Example 2
for Example 2. Plotted points indicate numerical values of
ǫ.
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Figure 11: Estimation errorseǫ andeθ.
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