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Abstract—We demonstrate a mechanism of breakdown
of a two-frequency torus in a piecewise smooth map, re-
sulting in the transition from a mode-locked periodic orbit
to chaos. It occurs through wrinkling of the nonsmooth un-
stable manifold that makes its length extend to infinity. We
explain the mechanism using the concept of stable folia-
tion.

1. Introduction

There are many routes for the transition from a periodic
orbit to a chaotic orbit, the most well-known ones being
the period-doubling route and the quasiperiodicity route.
In the latter route, a two-frequency torus forms through
a Neimark-Sacker bifurcation, which is subsequently de-
stroyed to give rise to a chaotic orbit.

The basic theorem for the destruction of two frequency
torus was given by Afraimovich and Shilnikov [1], where
three possible routes were described. References [2, 3] give
an overview of the possible topological transitions for the
loss of smoothness of the torus. Later these routes have
been confirmed numerically as well as experimentally for
both continuous- and discrete-time systems [4, 5]. These
results were obtained in the context of smooth maps.

In recent years, piecewise smooth maps (PWS) have at-
tracted significant research attention because such maps
have been found to model many physical, engineering, bi-
ological systems [6]. In a series of recent publications, the
creation of a torus has been described [8] for piecewise
smooth systems. It has also been shown [9] that there can
be transitions between resonance torus and ergodic torus as
a parameter is varied, and the mechanism of the transition
involves a breakdown of the torus through homoclinic in-
tersection. There is a ‘first contact’ between the stable and
the unstable manifold, followed by the homoclinic inter-
section, and then there is a ‘second contact’ after which the
homoclinic structure ceases to exist. It was claimed that af-
ter the second homoclinic contact the behavior changes to
quasiperiodicity.

Our further investigation has revealed that the orbit gen-
erated after the second homoclinic contact is, in fact,
chaotic—a large circle-like strange attractor. In this paper

we explain the mechanism of occurrence of such a strange
attractor.

In our present investigation we follow the bifurcations
that take place within a 1 : 5 mode locking tongue. In
particular, we consider the same parameter values as used
in [9]. We show that the resonance torus is first destroyed
through homoclinic bifurcation and then quadratic tangen-
cies with the stable foliation after the last homoclinc tan-
gency is responsible for the occurrence of the strange at-
tractor.

2. The Normal Form Map and the Formation of Reso-
nant Torus

We consider such PWS maps whose leading order Taylor
term in the neighborhood of the border is linear. For such
maps the normal form can be expressed as [7]
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The phase space is divided into two regions L = {(x, y) :

x ≤ 0, y ∈ R} and R = {(x, y) : x > 0, y ∈ R}. The fixed
points of the system (1) in both sides of the boundary are
given by:
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If the x-component of L∗ is negative, the fixed point ex-
ists and we call it a real fixed point. However, when the
x-component of L∗ is positive, we call it a virtual one and
then it is denoted by L̄∗. Similarly, when the x-component
of R∗ is positive, the fixed point exists; else it is a virtual
fixed point denoted by R̄∗.

The stability of L∗ and R∗ are determined by the eigen-
values
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The theory of border collision bifurcations developed so
far mainly assumes that |δL| < 1 and |δR| < 1, so that
the system is dissipative. Recently some researchers have
shown [9, 10] that many interesting dynamics can occur
when on one side of the border the determinant of the ja-
cobian matrix is greater than one. Accordingly, we choose
the parameters in the range |δL| < 1 and |δR| > 1. The
conditions

−(1 + δL) < τL < (1 + δL), −2
√

δR < τR < 2
√

δR

then ensure that the fixed point is attracting for µ < 0 and
is a spiral repeller for µ > 0. In our present investigation
we have used the values δL = 0.5 and δR = 1.6.

As we vary the parameter µ from a negative value to a
positive value, the fixed point moves from L to R through
border collision. With the traces and determinants set
within the above range, at the bifurcation point µ = 0, the
fixed point turns into an unstable focus. If we start from any
point on the R side, the iterates will start to spiral outward
and as it crosses the boundary and comes on the L side, the
systems dynamics will be governed by the virtual attractor
L̄∗ situated in R. As a result, the outward motion of the sys-
tem is arrested and it displays a rotating motion governed
by the complex conjugate eigenvalues of the unstable focus
situated on the R side.

We have shown the two-parameter (τL, τR) bifurcation
diagram in Fig. 1, obtained for µ > 0. This diagram
mainly consists of various periodic tongues. These reso-
nance tongues exhibit a lens-chain structure. This was first
reported in [11] for a piecewise linear circle map and later
it has been observed for the normal form map (1) in [9].
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Figure 1: Two-parameter bifurcation diagram of the normal
form map in the parameter plane (τL, τR) with δL = 0.5,
δR = 1.6, and µ = 0.05.

3. Large Circle-Like Strange Attractor

If we choose the parameter values corresponding to a
tongue of periodicity, the stable and unstable cycles arise
from the fixed point through border collision bifurcation.
Depending on the parameter space these cycles along with
the unstable manifold of the saddle cycle can form a closed
invariant curve. An example of such a curve is shown in
Fig. 2(a) for the 1 : 5 tongue.
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Figure 2: (a) Structure of the stable (blue) and unstable
(red) manifolds. The stable period-5 cycle is denoted by
the blue circles while the saddle period-5 cycle is denoted
by the green circles. Here τL = 0.30, τR = 1.0, δL =

0.5, δR = 1.6, and µ = 0.05. and (b) Bifurcation diagram
with τR as the variable parameter, with the other parameters
fixed at τL = 0.30, δL = 0.5, δR = 1.6, and µ = 0.05.
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Figure 3: (a) Magnified part of the bifurcation diagram
shown in (Fig. 2(b)). and (b) Largest Lyapunov exponent
with τL = 0.30, δL = 0.5, δR = 1.6, and µ = 0.05.

Since our map is piecewise smooth, the stable and un-
stable manifolds are also piecewise smooth. As a result
the closed invariant curve is piecewise smooth. If we in-
crease or decrease the parameter τR, at critical values of
the parameter, the stable and unstable fixed points collide
and disappear through border collision fold bifurcation . To
illustrate, Fig. 2(a) shows a period-5 attracting fixed point
and a period-5 saddle fixed point forming a saddle-node
connection at τR = 1.0. As the parameter τR is increased,
we have a parameter region where the period 5 attractor
co-exists with a chaotic attractor (Fig. 2(b), Fig. 3(a)). The
plot of the Lyapunov exponent in Fig. 3(b) shows that the
orbit is indeed chaotic. From Fig. 4 we can see that the at-
tractor is a circle-like strange attractor with infinite number
of folds in it.
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Figure 4: (a) A circle-like strange attractor for τL = 0.30,
τR = 1.0427, δL = 0.5, δR = 1.6, and µ = 0.05. (b) An
enlarged portion of the strange attractor showing an infinite
number of foldings.
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Figure 5: (a) The first homoclinic tangency between the
stable (blue) and unstable (red) manifolds. The stable
period-5 cycle is denoted by the blue circles while the sad-
dle period-5 cycle is denoted by the green circles. Here
τL = 0.30, τR = 1.041812, δL = 0.5, δR = 1.6, and
µ = 0.05. (b) The second homoclinic tangency between the
stable (blue) and unstable (red) manifolds. Here τL = 0.30,
τR = 1.0425, δL = 0.5, δR = 1.6, and µ = 0.05.

4. Mechanism of the Occurrence of Chaos

To understand the sequence of bifurcations that lead to
the chaotic orbit shown in Fig. 2(b) and Fig. 3(a), we
start with τR = 1.0 and gradually increase the parame-
ter. At τR = 1.041812, the manifolds become tangent
to each other. This is called the first homoclinic tan-
gency (Fig. 5(a)) and this leads to the formation of a non-
transversal homoclinic orbit. With further change of τR,
the stable and unstable manifolds intersect transversally to
form a homoclinic structure. This implies the existence of
a horseshoe. Next, at τR = 1.0425, the unstable manifold
moves to the right of the stable manifold and becomes tan-
gent again. This is called the second homoclinic tangency
(Fig. 5(b)). The strange attractor appears only after the sec-
ond homoclinic tangency (Fig. 3(b)).
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Figure 6: The stable and unstable manifolds along with the
stable foliation of a saddle fixed point p.

The mechanism of generation of this chaotic orbit rests
on the concept of stable foliation [2, 3]. Consider a saddle
point p of a homeomorphism f : R2 −→ R2 (see the illus-
tration in Fig. 6) . In the local neighborhood of the saddle
point, we define a family of curves or “leaves” that satisfy
the following properties:

• If c is any leaf, then f(c) is also contained in a leaf.

• Two points a and b lie on the same leaf iff

dist( f (a)n, f (b)n) converges to zero exponentially fast.

The union of the family of curves satisfying the above
properties is called a stable foliation. The stable manifold
Ws(p) is a curve, which is also a leaf of the foliation.
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Figure 7: (a) Schematic diagram showing two quadratic
tangencies of the unstable manifold with the leaves of the
stable foliation (green) of a saddle point. (b) Schematic
diagram showing the unfolding of two quadratic tangencies
through an intersection with a leaf of the stable foliation.

Now consider one of the points of the period-5 saddle,
which is a fixed point of the 5th iterate of the map. Consider
a stable foliation in its neighborhood, shown schematically
in Fig. 7(a). After the second homoclinic tangency, the un-
stable manifold generically has two nonsmooth quadratic
tangencies with two leaves of the stable foliation. These
tangencies are propagated by successive iterations of the
map. Now consider three points a, b, and c on the unsta-
ble manifold as shown in Fig. 7. The distance between the
successive images of the points b and c tends to zero ex-
ponentially while the distance between the points a and b
increase at a slow asymptotic rate. As a result the unstable
manifold, after returning very close to the saddle point, go
forth and back indefinitely. This creates an infinite number
of folds in the unstable manifold. As a result the closure
of the unstable manifold would have infinite length. This
gives rise to a large circular strange attractor (Fig. 4).

With further change in the parameter, two consecutive
nonsmooth quadratic tangencies unfold through an inter-
section with the stable foliation as shown in Fig. 7(b). As
more and more of such quadratic tangencies unfold, that
stretch of the unstable manifold ceases to have the repeated
foldings. Thus the length of the closure of the unsta-
ble manifold reduces progressively, and becomes finite at
τR ≈ 1.0483. At this point the strange attractor disappears.

After the disappearance of the strange attractor on the
closure of the unstable manifold, a high-periodic resonance
tongue comes into existence through a nonsmooth saddle-
node bifurcation and coexists with the period-5 tongue.
Throughout the parameter region 1.0483 < τR < 1.06878,
various high periodic resonance tongues coexist with the
period-5 tongue. Finally at τR ≈ 1.06878 the period-5 at-
tractor disappears through a border collision fold bifurca-
tion.

We have found that the mechanism described above is
generic. If a resonant torus goes through homoclinic bifur-
cation, a circular-shaped strange attractor with an infinite
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number of nonsmooth folds appears just after the second
homoclinic contact.

5. Ergodic torus
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Figure 8: (a) The bottom part of the 1 : 4 resonance tongue.
HB denotes the homoclinic bifurcation curves (the second
homoclinic contact), NC denotes the border-collision fold
bifurcation curves. (b) The quasiperiodic attractor for τL =

0.33375, τR = −0.39, δL = 0.5, δR = 1.6, and µ = 0.05.

If the orbit turns chaotic following the second homo-
clinic tangency, what is the mechanism of occurrence of
an ergodic torus? Our investigation reveals that if a reso-
nance torus does not break down through period doubling,
it disappears through border collision fold bifurcation. In
that case the resonance torus may not undergo homoclinic
bifurcation. If a resonance torus does not go through ho-
moclinic intersection, its border collision fold bifurcation
will give rise to an ergodic torus because of the absence of
any other high-periodic orbit. Fig. 8(a) shows a zoomed
portion of the 1 : 4 resonance tongue, along with the ho-
moclinic bifurcation curves. It is clear that there exists cer-
tain parameter regions where a resonance torus does not
experience homoclinic bifurcation as a parameter is varied.
For example if we fix τR at −0.39 and increase τL from
0.32, we observe the transition from a resonant torus to an
ergodic torus after the border collision fold bifurcation at
τL = 0.33375 (see Figs. 8(b)).

6. Conclusion

The destruction of two-frequency torus is one of the clas-
sical routes to chaos. Earlier work had revealed a mecha-
nism of torus destruction in piecewise smooth maps, which
goes through the sequence: first homoclinic contact fol-
lowed by homoclinic intersection, which is again followed
by a second homoclinic contact. In this work we have
shown that after the second homoclinic contact, a circular-
shaped strange attractor with an infinite number of nons-
mooth folds is created. The mechanism of this chaotic be-
havior is explained in terms of tangencies with the stable
foliation of the saddle fixed point. In case the closed in-
variant curve does not undergo a homoclinic intersection,
a quasiperiodic orbit exists when the invariant curve disap-
pears through a border collision fold bifurcation.
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