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t�Two-dimensional maps 
an model inter-a
tions between populations. Despite their simpli
ity,these dynami
al systems 
an show some 
omplex situ-ations, as multistability or fra
tal boundaries betweenbasins that lead to remarkable pi
tures. Some of themare shown and explained here for three di�erent 2Ddis
rete models.Keywords : fra
tal, basin, two-dimensional map, fuzzyboundary.1. Introdu
tionTwo-dimensional maps 
an be used to model inter-a
tions between two di�erent spe
ies. Su
h appli
a-tions 
an be 
onsidered in E
ology, Biology or E
on-omy [1, 2℄. Generally, real systems 
onsist in a largenumber of intera
ting spe
ies but the understanding ofthe behaviour of su
h systems in the low dimensional
ase 
an be of great help as a �rst step attempt. In thiswork, we 
onsider two-dimensional (2D) models basedon logisti
 multipli
ative 
oupling [3℄ where 
omplexbehaviours o

ur su
h as multistability phenomena,fra
tal basins of attra
tors and fra
tal boundaries be-tween basins [4, 5℄. These phenomena lead to some re-markable graphi
al representations in the phase spa
eplane. In Se
tion 2, we re
all three of these 
onsidered2D models. In Se
tion 3, we emphasize these models,whi
h permit to obtain fra
tal basins. Se
tion 4 is de-voted to multistability phenomena and fuzzy or fra
talboundaries beetwen basins.2. The modelsThe �rst 
onsidered model is the noninvertible 2Dmap T1 de�ned by:
{

xk+1 = λ(3xk + 1)yk(1 − yk)
yk+1 = λ(3yk + 1)xk(1 − xk)

(1)where λ is a real 
ontrol parameter, x and y arereal state variables. Previous studies of (1) have beendone in [5℄. This model is the symmetri
al 
ase of a2D model

Figure 1: Fra
tal basins of two order 2 
y
les for themap T1 (1), one basin is in yellow, the other in red.

Figure 2: Enlargment of Figure 1, Z1 area.
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Figure 3: Enlargment of Figure 1, Z2 area.proposed for the symbiosis intera
tion between twospe
ies [6℄. The se
ond model is the noninvertible 2Dmap T2 de�ned by:
{

xk+1 = λ(3yk + 1)xk(1 − xk)
yk+1 = λ(3xk+1 + 1)yk(1 − yk)

(2)where λ is a real 
ontrol parameter, x and y arereal state variables. The map (2) is also inspired inthe symbiosis 
ase [6℄ by in
luding a time asymmetri
feedba
k. Previous studies of (2) have been presentedin [7℄.

Figure 4: Enlargment of Figure 3, Z21 area.The third model is the noninvertible 2D map T3

de�ned by:
{

xk+1 = λ(−3yk + 4)xk(1 − xk)
yk+1 = λ(−3xk + 4)yk(1 − yk)

(3)where λ is real, x and y are real state variables.The map (3) 
orresponds to a 
ompetitive intera
tionbetween two spe
ies [8℄. In ea
h model, λ measuresthe strength of the 
oupling.

Figure 5: Basin of a �xed point for the map T2 (2).

Figure 6: Enlargment of Figure 5. Fra
tal stru
ture isobserved.
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3. Fra
tal basinsFigures 1-4 show the basin of two 
oexisting attra
-tors and su

essive enlargements in the 
ase of themap T1, ea
h attra
tor being an order 2 
y
le: onebasin is in yellow, the other one in red. Basins aresymmetri
al, non-
onne
ted and fra
tal. Su

essiveenlargements of the 2-dimensional phase spa
e on thediagonal (Z1 area) and on Z2 area show auto-similarityproperties. The shape of ea
h enlarged pie
e of basinis similar to the pre
edent pie
e with an alternationbetween the su

essive lo
ations of symmetri
al yel-low and red basins. Su
h a shape 
an be explained byusing the 
riti
al manifolds of (1) [4, 5℄.Figures 5-6 show the fra
tal basin of a �xed pointfor the map T2. This basin is non-
onne
ted. Figure 6shows 
learly the auto-similarity property. The ap-pearan
e of su
h a fra
tal basin 
an also be explainedby using the 
riti
al manifolds [4, 7℄.Figures 7-8 show a fra
tal basin for the map T3.The attra
tor is 
haoti
 and it is not represented onthe Figures [8℄. As in the 
ase of the map (1), thesu

essive auto-similar pie
es of the basin are lo
atedon the diagonal. The fra
talization of the basins 
anbe understood by means of the 
riti
al manifolds [4, 8℄,as in the 
ase of the maps (1) and (2).

Figure 7: Fra
tal basin for the map T3 (3).4. Multistability and Fra
tal boundariesMultistability among several attra
tors is very fre-quent in these models. As it 
an be seen in the Fig-ures 9-12, the basins 
an take 
omplex and fra
talforms. Figure 9 shows the shape of the basins of threedi�erent attra
tors. The boundary among those basins

is fra
tal, due to the a

umulation and the entangle-ment 
lose to the boundary of the square [0, 1]2. Fig-ure 10 represents the basin of two di�erent attra
tors,wi
h are order 3 invariant 
losed 
urve (ICC), for themap T2. Then we obtain six di�erent basins in T 3
2for ea
h pie
e of the two 
o-existing order 3 ICC in

T2. Some of the basins 
an be riddled, that is, su
-
essive zooms of a basin zone 
annot di�erentiate theboundaries between the basins of the di�erent attra
-tors. Su
h basins are shown on Figures 11-12. Thereare two 
haoti
 attra
tors, whi
h are order 52 
haoti
rings. They are 
alled weakly 
haoti
 be
ause of thegreater Lyapunov exponent, whi
h is slightly positive[7℄.

Figure 8: Enlargment of Figure 7.Referen
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Figure 9: Basins of an order 29 
y
le and two order 3invariant 
losed 
urves (ICC) for the map T2.

Figure 10: Basin for T 3
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Figure 11: Riddled basin of two order 52 weakly
haoti
 rings (WCR) for the map T3.
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