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Abstract—Two-dimensional maps can model inter-

actions between populations. Despite their simplicity, r.=-14

these dynamical systems can show some complex situ- 100 1
ations, as multistability or fractal boundaries between v ' g
basins that lead to remarkable pictures. Some of them ; P

are shown and explained here for three different 2D
discrete models.
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1. Introduction

Two-dimensional maps can be used to model inter-
actions between two different species. Such applica-
tions can be considered in Ecology, Biology or Econ-
omy [1, 2]. Generally, real systems consist in a large
number of interacting species but the understanding of 750
the behaviour of such systems in the low dimensional
case can be of great help as a first step attempt. In this
work, we consider two-dimensional (2D) models based Figure 1: Fractal basins of two order 2 cycles for the

on logistic multiplicative coupling [3| where complex  map T (1), one basin is in yellow, the other in red.
behaviours occur such as multistability phenomena,

fractal basins of attractors and fractal boundaries be-
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tween basins [4, 5]. These phenomena lead to some re- r.=-14
markable graphical representations in the phase space 1180
plane. In Section 2, we recall three of these considered W

2D models. In Section 3, we emphasize these models, }
which permit to obtain fractal basins. Section 4 is de-
voted to multistability phenomena and fuzzy or fractal
boundaries beetwen basins.

2. The models

The first considered model is the noninvertible 2D —
map T3 defined by:
Trt1 = AQBak + Dy (1 — yi) (1)
Yk+1 = AByr + 1)zi (1 — zx) ;
where X is a real control parameter, z and y are e L,,lu ¥ 1120
real state variables. Previous studies of (1) have been
done in [5]. This model is the symmetrical case of a . .
2D model Figure 2: Enlargment of Figure 1, Z1 area.
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Figure 3: Enlargment of Figure 1, Z2 area.

proposed for the symbiosis interaction between two
species [6]. The second model is the noninvertible 2D
map 75 defined by:

{ Try1 = AByr + D)ap(l — )

2
Yk+1 = ANBxrg1 + Dyr(l — yi) @)

where X is a real control parameter, z and y are
real state variables. The map (2) is also inspired in
the symbiosis case [6] by including a time asymmetric
feedback. Previous studies of (2) have been presented
in [7].
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Figure 4: Enlargment of Figure 3, Z21 area.

The third model is the noninvertible 2D map T3

defined by:

{ Tht1 = )\(—3yk + 4):Ek(1 — :Ek) (3)
Yrr1 = A(=3zk + 4)yr(1 — yr)

where A is real, = and y are real state variables.
The map (3) corresponds to a competitive interaction
between two species [8]. In each model, A\ measures
the strength of the coupling.

A =0407

3.000

=3.000

-3 000 3000
X

Figure 5: Basin of a fixed point for the map T (2).
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Figure 6: Enlargment of Figure 5. Fractal structure is
observed.
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3. Fractal basins

Figures 1-4 show the basin of two coexisting attrac-
tors and successive enlargements in the case of the
map 71, each attractor being an order 2 cycle: one
basin is in yellow, the other one in red. Basins are
symmetrical, non-connected and fractal. Successive
enlargements of the 2-dimensional phase space on the
diagonal (Z1 area) and on Z2 area show auto-similarity
properties. The shape of each enlarged piece of basin
is similar to the precedent piece with an alternation
between the successive locations of symmetrical yel-
low and red basins. Such a shape can be explained by
using the critical manifolds of (1) [4, 5].

Figures 5-6 show the fractal basin of a fixed point
for the map 75. This basin is non-connected. Figure 6
shows clearly the auto-similarity property. The ap-
pearance of such a fractal basin can also be explained
by using the critical manifolds [4, 7].

Figures 7-8 show a fractal basin for the map 753.
The attractor is chaotic and it is not represented on
the Figures [8]. As in the case of the map (1), the
successive auto-similar pieces of the basin are located
on the diagonal. The fractalization of the basins can
be understood by means of the critical manifolds [4, 8],
as in the case of the maps (1) and (2).
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Figure 7: Fractal basin for the map T3 (3).

4, Multistability and Fractal boundaries

Multistability among several attractors is very fre-
quent in these models. As it can be seen in the Fig-
ures 9-12, the basins can take complex and fractal
forms. Figure 9 shows the shape of the basins of three
different attractors. The boundary among those basins

is fractal, due to the accumulation and the entangle-
ment close to the boundary of the square [0, 1]%. Fig-
ure 10 represents the basin of two different attractors,
wich are order 3 invariant closed curve (ICC), for the
map T». Then we obtain six different basins in T3
for each piece of the two co-existing order 3 ICC in
T>. Some of the basins can be riddled, that is, suc-
cessive zooms of a basin zone cannot differentiate the
boundaries between the basins of the different attrac-
tors. Such basins are shown on Figures 11-12. There
are two chaotic attractors, which are order 52 chaotic
rings. They are called weakly chaotic because of the
greater Lyapunov exponent, which is slightly positive
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Figure 8: Enlargment of Figure 7.

References

[1] Lopez-Ruiz R., Fournier-Prunaret D., Logistic
Models for Symbiosis, Predator-prey and Compe-
tition, Encyc. of Networked and Virtual Organiza-
tions, vol. IT (2008) 838-847.

[2] Cushing J.M., Levarge S., Chitnis N., Henson S.M.,
Some discrete competition models and the Compet-
itive Exclusion Principle, J. Diff. Eqns. Appl., vol.
10 (2004) 1139-1151.

[3] Lopez-Ruiz R., Perez-Garcia C., Dynamics of two
logistic maps with a multiplicative coupling, Int. J.
Bif. Chaos, vol. 2 (1992) 421-425.

[4] Mira C., Fournier-Prunaret D., Gardini L.,
Kawakami H., Cathala J.C., Basin bifurcations of
2-dimensional noninvertible maps. Fractalization
of basins, Int. J. Bif. Chaos, vol. 4 (1994) 343-381.

- 109 -



. =1.11598
1.000
Y i :
Y ) (]
)
"/
X
oo
000 ¥ 1000

Figure 9: Basins of an order 29 cycle and two order 3
invariant closed curves (ICC) for the map T5.
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Figure 10: Basin for 73 of 2 order 3 ICC.
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Figure 12: Enlargment of Figure 11, BZ area.
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