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Abstract—This paper presents the growing insensitive particle
swarm optimizer (GIPSO) for multi-solution problems. Espe-
cially, we consider the case where the number of solutions is
unknown. The GIPSO uses ring-topology and has an insensitive
parameter. The number of particles can increases and the swarm
can grow. If parameter velues are selected suitably, the GIPSO
can identify all the solutions and can clarify the number of
solutions. Performing fundamental numerical experiments, we
investigate the algorithm capability.

I. INTRODUCTION

The particle swarm optimizer (PSO) is a population-based
optimization method inspired by flocking behavior of living
beings [1]. The living beings are modeled by a particle-
swarm where each particle is characterized by position and
velocity. The positions correspond to potential solutions and is
evaluated by an objective function. The particles search desired
optimal solution(s) based on inter-particle communication.
The PSO does not require gradient information of objective
function. The PSO is a simple in concept, is fast, and has been
applied to various particle/potential engineering applications.
The applications include design of circuits and neural networks
[2]-[5].

For a simple single solution problem, the PSO is suitable for
global search. Because it can find an optimal solution by few
particles even if the search apace is vast. However, standard
PSOs are not suitable for multi-solution problems (MSP [7]-
[?]) where particles are often trapped into partial/local solu-
tions.

In this paper, we present the growing insensitive particle
swarm optimizer (GIPSO) for MSP. Especially, we consider
the case where the number of solutions is unknown. The
GIPSO is defined on a particle swarm of ring-topology and
has an insensitive parameter. The number of particles can
increases and the swarm can grow. If parameter velues are
selected suitably, the GIPSO can identify all the (approximate)
solutions and can clarify the number of solutions. Also, the
GIPSO includes no random parameters: it is deterministic
[9]-km2. Such a deterministic system is convenient in mo-
tion analysis and reproducibility performance evaluation. This
system is distributive, and each particle motion is limited in
lattice point. Performing fundamental numerical experiments,
we investigate the algorithm capability in the MSP. Although
this paper considers an elementary MSP, the results may be
developed into a variety of engineering applications.

Fig. 1. Ring topology.

II. RING-TYPE INSENSITIVE PSO

The objective function for the GIPSO is defined by

FA : SA → R+, SA = {(x1, x2)|XL ≤ xi ≤ XR, i = 1, 2}
(1)

where SA is a two-dimensional search space and R+ denotes
positive reals. Let x ≡ (x1, x2). Assuming FA has plural
minima, the multi solutions xi

s are defined by

FA(xi
s) = 0,

xi
s ≡ (xt

s1, x
t
s2) ∈ SA, i = 1 ∼ NA

(2)

where i = 1 ∼ NA and NA is the number of solutions.
Although we define the GIPSO for considers two-dimensional
objective function FA, the definition can be generalized by
replacing x with n-dimensional vectors.

The GIPSO employs N t particles at search step t. Note that
the number of particles N t is time-vaiant. let P t denote the
particle swarm at . Let P t

i be the i-th particle. The i-th particle
is characterized by its position xt

i and velocity vt
i where i ∼

N t. The update of the particle is based on the personal best
(Pbesti) and local best (Lbesti) 1 for the objective function
FA. The Pbesti gives the best value in the past history of Pi.
Lbesti is the best of the personal best in the neighbor of Pi.
The neighbor particles are given depending on the topology of
the particle swarms. We adopt the ring topology as shown in
Fig. 1. For a particle, the both sides particles are the neighbors
2. The GIPSO includes insensitive parameter that can make
update of the Lbesti insensitive. In this paper, we assume

1In standard PSOs, the global best is used of the local best.
2In the compelte graph, all the particles are the neighbors.
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that the number of solutions NA is unknown. Our purpose is
to identify positions of all the approximate solutions and to
clarify the the number solutions. The GIPSO is defined by the
following 7 steps.

STEP 1(Initialization): Let search step t = 0 and let the initial
number of particles is N t = N0. Particle positions xt

i and
velocities vt

i are initialized where i = 1 ∼ N . Personal bests
and local bests are initialized: �xpbesti = �xlbesti = �xt

i. The
number of approximate solutions is initialized: k = 0. The
number of areas of approximate solutions is initialized: S = 0.

STEP 2 (Approximate solutions): If the i-th particle position
satisfies

F (�xt
i) < CA (3)

then xt
i is declared as an approximate solution. The approxi-

mate solution is labelled by ak . (If this is the first approximate
solution then S = 1).

STEP 3 (Area judegment): If ak is not included in an area of
existing approximate solutions then a new area is generated.

S ← S + 1 if |�ak − �aj| > r for j < k (4)

where | · | denote the Euclidean distance and the parameter
r decides the approximate solution area. We have used the
descending sort algorithm in the judgement. Let k ← k + 1.

STEP 4 Personal and local bests are updated:

�xt
pbesti

← �xt
i if F (�xt

i) < F (�xt
pbesti

)
�xt

lbesti
← �xt

pbesti
if F (�xt

pbesti
) < (�xt

lbesti
)− εt (5)

εt ← ε0 × tmax − t

tmax

where εt is an time-variant parameter which controls insensi-
bility. ε0 is an initial value and tmax is the maximum step in
STEP 7. If εt is smaller then the update occurs frequently. The
case εt = 0 corresponds to normal PSOs. This insensitivity
may be effective to avoid trap into local/partial solutions and
to enlarge the swarm diversity.

STEP 5: Position and velocities are updated:

�vt+1
i ← w × �vt + c× (�xt

lbesti
− �xt

i)
�xt+1

i ← �xt + �vt+1
i

(6)

where w and c are deterministic parameters. Note that our
GIPSO includes no random parameters.

STEP 6 (Growing Swarm): At every Δt steps, the number of
particle increases:

N t ← N t + ΔN at t = nΔt (7)

where Δt = tmax/M and The maximum particle number is
N0 + M ×ΔN .

STEP7 Let t ← t + 1, return to STEP2 and repeat until
t = tmax .

After the algorith is terminated, S gives the number of
approximate solution areas and ai, i = 1 ∼ k gives the ap-
proximate solutions. Note that ai in the comomn approximate
solution area corresponds to one approximate solution of the
MSP.

III. NUMERICAL EXPERIMENTS

We consider the following fundamental objective function:

FA(x) = cos(2πx1) + cos(2πx2) + 2
x ≡ (x1, x2), −1.9 < x1 < 1, −1.9 < x2 < 1 (8)

As shown in the contour map in Fig. 2, this function has 9
solutions (NA = 9). The pupose of MSP is identification of
all the 9 approximate solutions. We apply the GIPSO to this
MSP. For simplicity, we discretize the search space SA onto
NC×NC lattice points: the particle positions are discretize on
the lattice points where the function is . After trial-and-errors,
parameters are selected as the following:

w = 0.7, c = 0.7. CA = 0.02, N0 = 10, tmax = 50
Δt = 10 (M = 5), ΔN = 20, ε0 = 0.5, NC = 128.

(9)
Performing numerical experiment, we have confirmed that the
GIPSO can identify all the 9 approximate solutions. Figure 3
shows snapshots where nine red circles are approximate solu-
tion areas and blue points in them are approximate solutions.

In order to compare the camability of GIPSO, we apply the
other three algorithms to the same MSP:

RPSO: PSO on the ring topology. It is defined by removing
growing swarm in Step 6 and insensitive parameter in Step 4.

IPSO: PSO with insensitivity. It is defined by removing
growing swarm in Step 6.

GPSO: PSO with growing swarm. It is defined by removing
insensitive parameter in Step 4.

These three algorithm can not identify all the nine approx-
imate solutions as suggested in Figs. 4 to 6.

Fig. 2. Contour map of the MSP objective function.
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Fig. 3. Snapshots in search process of GIPSO. Red circles denote identified
solution areas.

Fig. 4. Snapshots of RPSO (N = 60, εt = 0)

Fig. 5. Snapshots of IPSO (N = 60)

Fig. 6. Snapshots of GPSO (εt = 0)
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IV. CONCLUSIONS

GIPSO is presented and is applied to a fundamental MSP in
this paper. In the MSP, the number of solutions is assumed to
be unknown. The GIPSO is defined on the ring-type particle
swarm with growing structure and has insensitive parameter.
In the numerical experiment, the GIPSO has identified all the
solutions.

Our future problems include optimization of topology and
parameters, generalization of algorithm, application to large-
scale problems, application to complex MSPs, and engineering
applications.
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